Youzheng Wu


2021

pdf bib
RevCore: Review-Augmented Conversational Recommendation
Yu Lu | Junwei Bao | Yan Song | Zichen Ma | Shuguang Cui | Youzheng Wu | Xiaodong He
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce
Song Xu | Haoran Li | Peng Yuan | Yujia Wang | Youzheng Wu | Xiaodong He | Ying Liu | Bowen Zhou
Findings of the Association for Computational Linguistics: EMNLP 2021

Existing pre-trained language models (PLMs) have demonstrated the effectiveness of self-supervised learning for a broad range of natural language processing (NLP) tasks. However, most of them are not explicitly aware of domain-specific knowledge, which is essential for downstream tasks in many domains, such as tasks in e-commerce scenarios. In this paper, we propose K-PLUG, a knowledge-injected pre-trained language model based on the encoder-decoder transformer that can be transferred to both natural language understanding and generation tasks. Specifically, we propose five knowledge-aware self-supervised pre-training objectives to formulate the learning of domain-specific knowledge, including e-commerce domain-specific knowledge-bases, aspects of product entities, categories of product entities, and unique selling propositions of product entities. We verify our method in a diverse range of e-commerce scenarios that require domain-specific knowledge, including product knowledge base completion, abstractive product summarization, and multi-turn dialogue. K-PLUG significantly outperforms baselines across the board, which demonstrates that the proposed method effectively learns a diverse set of domain-specific knowledge for both language understanding and generation tasks. Our code is available.

pdf bib
RoR: Read-over-Read for Long Document Machine Reading Comprehension
Jing Zhao | Junwei Bao | Yifan Wang | Yongwei Zhou | Youzheng Wu | Xiaodong He | Bowen Zhou
Findings of the Association for Computational Linguistics: EMNLP 2021

Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).

pdf bib
SGG: Learning to Select, Guide, and Generate for Keyphrase Generation
Jing Zhao | Junwei Bao | Yifan Wang | Youzheng Wu | Xiaodong He | Bowen Zhou
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Keyphrases, that concisely summarize the high-level topics discussed in a document, can be categorized into present keyphrase which explicitly appears in the source text and absent keyphrase which does not match any contiguous subsequence but is highly semantically related to the source. Most existing keyphrase generation approaches synchronously generate present and absent keyphrases without explicitly distinguishing these two categories. In this paper, a Select-Guide-Generate (SGG) approach is proposed to deal with present and absent keyphrases generation separately with different mechanisms. Specifically, SGG is a hierarchical neural network which consists of a pointing-based selector at low layer concentrated on present keyphrase generation, a selection-guided generator at high layer dedicated to absent keyphrase generation, and a guider in the middle to transfer information from selector to generator. Experimental results on four keyphrase generation benchmarks demonstrate the effectiveness of our model, which significantly outperforms the strong baselines for both present and absent keyphrases generation. Furthermore, we extend SGG to a title generation task which indicates its extensibility in natural language generation tasks.

pdf bib
Learn to Copy from the Copying History: Correlational Copy Network for Abstractive Summarization
Haoran Li | Song Xu | Peng Yuan | Yujia Wang | Youzheng Wu | Xiaodong He | Bowen Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

The copying mechanism has had considerable success in abstractive summarization, facilitating models to directly copy words from the input text to the output summary. Existing works mostly employ encoder-decoder attention, which applies copying at each time step independently of the former ones. However, this may sometimes lead to incomplete copying. In this paper, we propose a novel copying scheme named Correlational Copying Network (CoCoNet) that enhances the standard copying mechanism by keeping track of the copying history. It thereby takes advantage of prior copying distributions and, at each time step, explicitly encourages the model to copy the input word that is relevant to the previously copied one. In addition, we strengthen CoCoNet through pre-training with suitable corpora that simulate the copying behaviors. Experimental results show that CoCoNet can copy more accurately and achieves new state-of-the-art performances on summarization benchmarks, including CNN/DailyMail for news summarization and SAMSum for dialogue summarization. The code and checkpoint will be publicly available.

2020

pdf bib
The JDDC Corpus: A Large-Scale Multi-Turn Chinese Dialogue Dataset for E-commerce Customer Service
Meng Chen | Ruixue Liu | Lei Shen | Shaozu Yuan | Jingyan Zhou | Youzheng Wu | Xiaodong He | Bowen Zhou
Proceedings of the 12th Language Resources and Evaluation Conference

Human conversations are complicated and building a human-like dialogue agent is an extremely challenging task. With the rapid development of deep learning techniques, data-driven models become more and more prevalent which need a huge amount of real conversation data. In this paper, we construct a large-scale real scenario Chinese E-commerce conversation corpus, JDDC, with more than 1 million multi-turn dialogues, 20 million utterances, and 150 million words. The dataset reflects several characteristics of human-human conversations, e.g., goal-driven, and long-term dependency among the context. It also covers various dialogue types including task-oriented, chitchat and question-answering. Extra intent information and three well-annotated challenge sets are also provided. Then, we evaluate several retrieval-based and generative models to provide basic benchmark performance on the JDDC corpus. And we hope JDDC can serve as an effective testbed and benefit the development of fundamental research in dialogue task.

pdf bib
Multimodal Joint Attribute Prediction and Value Extraction for E-commerce Product
Tiangang Zhu | Yue Wang | Haoran Li | Youzheng Wu | Xiaodong He | Bowen Zhou
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product recommendations, and product retrieval. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we propose a multimodal method to jointly predict product attributes and extract values from textual product descriptions with the help of the product images. We argue that product attributes and values are highly correlated, e.g., it will be easier to extract the values on condition that the product attributes are given. Thus, we jointly model the attribute prediction and value extraction tasks from multiple aspects towards the interactions between attributes and values. Moreover, product images have distinct effects on our tasks for different product attributes and values. Thus, we selectively draw useful visual information from product images to enhance our model. We annotate a multimodal product attribute value dataset that contains 87,194 instances, and the experimental results on this dataset demonstrate that explicitly modeling the relationship between attributes and values facilitates our method to establish the correspondence between them, and selectively utilizing visual product information is necessary for the task. Our code and dataset are available at https://github.com/jd-aig/JAVE.

pdf bib
On the Faithfulness for E-commerce Product Summarization
Peng Yuan | Haoran Li | Song Xu | Youzheng Wu | Xiaodong He | Bowen Zhou
Proceedings of the 28th International Conference on Computational Linguistics

In this work, we present a model to generate e-commerce product summaries. The consistency between the generated summary and the product attributes is an essential criterion for the ecommerce product summarization task. To enhance the consistency, first, we encode the product attribute table to guide the process of summary generation. Second, we identify the attribute words from the vocabulary, and we constrain these attribute words can be presented in the summaries only through copying from the source, i.e., the attribute words not in the source cannot be generated. We construct a Chinese e-commerce product summarization dataset, and the experimental results on this dataset demonstrate that our models significantly improve the faithfulness.

pdf bib
Learning to Decouple Relations: Few-Shot Relation Classification with Entity-Guided Attention and Confusion-Aware Training
Yingyao Wang | Junwei Bao | Guangyi Liu | Youzheng Wu | Xiaodong He | Bowen Zhou | Tiejun Zhao
Proceedings of the 28th International Conference on Computational Linguistics

This paper aims to enhance the few-shot relation classification especially for sentences that jointly describe multiple relations. Due to the fact that some relations usually keep high co-occurrence in the same context, previous few-shot relation classifiers struggle to distinguish them with few annotated instances. To alleviate the above relation confusion problem, we propose CTEG, a model equipped with two novel mechanisms to learn to decouple these easily-confused relations. On the one hand, an Entity -Guided Attention (EGA) mechanism, which leverages the syntactic relations and relative positions between each word and the specified entity pair, is introduced to guide the attention to filter out information causing confusion. On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations by playing a pushing-away game between classifying a sentence into a true relation and its confusing relation. Extensive experiments are conducted on the FewRel dataset, and the results show that our proposed model achieves comparable and even much better results to strong baselines in terms of accuracy. Furthermore, the ablation test and case study verify the effectiveness of our proposed EGA and CAT, especially in addressing the relation confusion problem.

pdf bib
Enhancing Automated Essay Scoring Performance via Fine-tuning Pre-trained Language Models with Combination of Regression and Ranking
Ruosong Yang | Jiannong Cao | Zhiyuan Wen | Youzheng Wu | Xiaodong He
Findings of the Association for Computational Linguistics: EMNLP 2020

Automated Essay Scoring (AES) is a critical text regression task that automatically assigns scores to essays based on their writing quality. Recently, the performance of sentence prediction tasks has been largely improved by using Pre-trained Language Models via fusing representations from different layers, constructing an auxiliary sentence, using multi-task learning, etc. However, to solve the AES task, previous works utilize shallow neural networks to learn essay representations and constrain calculated scores with regression loss or ranking loss, respectively. Since shallow neural networks trained on limited samples show poor performance to capture deep semantic of texts. And without an accurate scoring function, ranking loss and regression loss measures two different aspects of the calculated scores. To improve AES’s performance, we find a new way to fine-tune pre-trained language models with multiple losses of the same task. In this paper, we propose to utilize a pre-trained language model to learn text representations first. With scores calculated from the representations, mean square error loss and the batch-wise ListNet loss with dynamic weights constrain the scores simultaneously. We utilize Quadratic Weighted Kappa to evaluate our model on the Automated Student Assessment Prize dataset. Our model outperforms not only state-of-the-art neural models near 3 percent but also the latest statistic model. Especially on the two narrative prompts, our model performs much better than all other state-of-the-art models.

pdf bib
Self-Attention Guided Copy Mechanism for Abstractive Summarization
Song Xu | Haoran Li | Peng Yuan | Youzheng Wu | Xiaodong He | Bowen Zhou
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Copy module has been widely equipped in the recent abstractive summarization models, which facilitates the decoder to extract words from the source into the summary. Generally, the encoder-decoder attention is served as the copy distribution, while how to guarantee that important words in the source are copied remains a challenge. In this work, we propose a Transformer-based model to enhance the copy mechanism. Specifically, we identify the importance of each source word based on the degree centrality with a directed graph built by the self-attention layer in the Transformer. We use the centrality of each source word to guide the copy process explicitly. Experimental results show that the self-attention graph provides useful guidance for the copy distribution. Our proposed models significantly outperform the baseline methods on the CNN/Daily Mail dataset and the Gigaword dataset.

2014

pdf bib
Recurrent Neural Network-based Tuple Sequence Model for Machine Translation
Youzheng Wu | Taro Watanabe | Chiori Hori
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers

2013

pdf bib
The NICT ASR system for IWSLT 2013
Chien-Lin Huang | Paul R. Dixon | Shigeki Matsuda | Youzheng Wu | Xugang Lu | Masahiro Saiko | Chiori Hori
Proceedings of the 10th International Workshop on Spoken Language Translation: Evaluation Campaign

This study presents the NICT automatic speech recognition (ASR) system submitted for the IWSLT 2013 ASR evaluation. We apply two types of acoustic features and three types of acoustic models to the NICT ASR system. Our system is comprised of six subsystems with different acoustic features and models. This study reports the individual results and fusion of systems and highlights the improvements made by our proposed methods that include the automatic segmentation of audio data, language model adaptation, speaker adaptive training of deep neural network models, and the NICT SprinTra decoder. Our experimental results indicated that our proposed methods offer good performance improvements on lecture speech recognition tasks. Our results denoted a 13.5% word error rate on the IWSLT 2013 ASR English test data set.

2012

pdf bib
Factored Language Model based on Recurrent Neural Network
Youzheng Wu | Xugang Lu | Hitoshi Yamamoto | Shigeki Matsuda | Chiori Hori | Hideki Kashioka
Proceedings of COLING 2012

pdf bib
The NICT ASR system for IWSLT2012
Hitoshi Yamamoto | Youzheng Wu | Chien-Lin Huang | Xugang Lu | Paul R. Dixon | Shigeki Matsuda | Chiori Hori | Hideki Kashioka
Proceedings of the 9th International Workshop on Spoken Language Translation: Evaluation Campaign

This paper describes our automatic speech recognition (ASR) system for the IWSLT 2012 evaluation campaign. The target data of the campaign is selected from the TED talks, a collection of public speeches on a variety of topics spoken in English. Our ASR system is based on weighted finite-state transducers and exploits an combination of acoustic models for spontaneous speech, language models based on n-gram and factored recurrent neural network trained with effectively selected corpora, and unsupervised topic adaptation framework utilizing ASR results. Accordingly, the system achieved 10.6% and 12.0% word error rate for the tst2011 and tst2012 evaluation set, respectively.

pdf bib
Factored recurrent neural network language model in TED lecture transcription
Youzheng Wu | Hitoshi Yamamoto | Xugang Lu | Shigeki Matsuda | Chiori Hori | Hideki Kashioka
Proceedings of the 9th International Workshop on Spoken Language Translation: Papers

In this study, we extend recurrent neural network-based language models (RNNLMs) by explicitly integrating morphological and syntactic factors (or features). Our proposed RNNLM is called a factored RNNLM that is expected to enhance RNNLMs. A number of experiments are carried out on top of state-of-the-art LVCSR system that show the factored RNNLM improves the performance measured by perplexity and word error rate. In the IWSLT TED test data sets, absolute word error rate reductions over RNNLM and n-gram LM are 0.4∼0.8 points.

2011

pdf bib
The NICT ASR system for IWSLT2011
Kazuhiko Abe | Youzheng Wu | Chien-lin Huang | Paul R. Dixon | Shigeki Matsuda | Chiori Hori | Hideki Kashioka
Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign

In this paper, we describe NICT’s participation in the IWSLT 2011 evaluation campaign for the ASR Track. To recognize spontaneous speech, we prepared an acoustic model trained by more spontaneous speech corpora and a language model constructed with text corpora distributed by the organizer. We built the multi-pass ASR system by adapting the acoustic and language models with previous ASR results. The target speech was selected from talks on the TED (Technology, Entertainment, Design) program. Here, a large reduction in word error rate was obtained by the speaker adaptation of the acoustic model with MLLR. Additional improvement was achieved not only by adaptation of the language model but also by parallel usage of the baseline and speaker-dependent acoustic models. Accordingly, the final WER was reduced by 30% from the baseline ASR for the distributed test set.

pdf bib
Improving Related Entity Finding via Incorporating Homepages and Recognizing Fine-grained Entities
Youzheng Wu | Chiori Hori | Hisashi Kawai | Hideki Kashioka
Proceedings of 5th International Joint Conference on Natural Language Processing

pdf bib
Answering Complex Questions via Exploiting Social Q&A Collection
Youzheng Wu | Chiori Hori | Hisashi Kawai | Hideki Kashioka
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Exploiting Social Q&A Collection in Answering Complex Questions
Youzheng Wu | Kawai Hisashi
CIPS-SIGHAN Joint Conference on Chinese Language Processing

2008

pdf bib
Learning Reliable Information for Dependency Parsing Adaptation
Wenliang Chen | Youzheng Wu | Hitoshi Isahara
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008)

2007

pdf bib
Learning Unsupervised SVM Classifier for Answer Selection in Web Question Answering
Youzheng Wu | Ruiqiang Zhang | Xinhui Hu | Hideki Kashioka
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)

2006

pdf bib
Cluster-Based Language Model for Sentence Retrieval in Chinese Question Answering
Youzheng Wu | Jun Zhao | Bo Xu
Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing

2005

pdf bib
Chinese Named Entity Recognition with Multiple Features
Youzheng Wu | Jun Zhao | Bo Xu | Hao Yu
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing

2003

pdf bib
Chinese Named Entity Recognition Combining Statistical Model wih Human Knowledge
Youzheng Wu | Jun Zhao | Bo Xu
Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-language Named Entity Recognition