Yu Cheng


2022

pdf bib
A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models
Woojeong Jin | Yu Cheng | Yelong Shen | Weizhu Chen | Xiang Ren
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large pre-trained vision-language (VL) models can learn a new task with a handful of examples and generalize to a new task without fine-tuning.However, these VL models are hard to deploy for real-world applications due to their impractically huge sizes and slow inference speed.To solve this limitation, we study prompt-based low-resource learning of VL tasks with our proposed method, FewVLM, relatively smaller than recent few-shot learners.For FewVLM, we pre-train a sequence-to-sequence transformer model with prefix language modeling (PrefixLM) and masked language modeling (MaskedLM).Furthermore, we analyze the effect of diverse prompts for few-shot tasks.Experimental results on VQA show that FewVLM with prompt-based learning outperforms Frozen which is 31x larger than FewVLM by 18.2% point and achieves comparable results to a 246x larger model, PICa.In our analysis, we observe that (1) prompts significantly affect zero-shot performance but marginally affect few-shot performance, (2) models with noisy prompts learn as quickly as hand-crafted prompts given larger training data, and (3) MaskedLM helps VQA tasks while PrefixLM boosts captioning performance. Our code is publicly available at https://github.com/woojeongjin/FewVLM

2021

pdf bib
Cluster-Former: Clustering-based Sparse Transformer for Question Answering
Shuohang Wang | Luowei Zhou | Zhe Gan | Yen-Chun Chen | Yuwei Fang | Siqi Sun | Yu Cheng | Jingjing Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
APo-VAE: Text Generation in Hyperbolic Space
Shuyang Dai | Zhe Gan | Yu Cheng | Chenyang Tao | Lawrence Carin | Jingjing Liu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Natural language often exhibits inherent hierarchical structure ingrained with complex syntax and semantics. However, most state-of-the-art deep generative models learn embeddings only in Euclidean vector space, without accounting for this structural property of language. In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations. An Adversarial Poincare Variational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions. By adopting the primal-dual formulation of Kullback-Leibler divergence, an adversarial learning procedure is introduced to empower robust model training. Extensive experiments in language modeling, unaligned style transfer, and dialog-response generation demonstrate the effectiveness of the proposed APo-VAE model over VAEs in Euclidean latent space, thanks to its superb capabilities in capturing latent language hierarchies in hyperbolic space.

pdf bib
Few-Shot Text Classification with Triplet Networks, Data Augmentation, and Curriculum Learning
Jason Wei | Chengyu Huang | Soroush Vosoughi | Yu Cheng | Shiqi Xu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation—a technique particularly suitable for training with limited data—for this few-shot, highly-multiclass text classification setting. On four diverse text classification tasks, we find that common data augmentation techniques can improve the performance of triplet networks by up to 3.0% on average. To further boost performance, we present a simple training strategy called curriculum data augmentation, which leverages curriculum learning by first training on only original examples and then introducing augmented data as training progresses. We explore a two-stage and a gradual schedule, and find that, compared with standard single-stage training, curriculum data augmentation trains faster, improves performance, and remains robust to high amounts of noising from augmentation.

pdf bib
EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets
Xiaohan Chen | Yu Cheng | Shuohang Wang | Zhe Gan | Zhangyang Wang | Jingjing Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Heavily overparameterized language models such as BERT, XLNet and T5 have achieved impressive success in many NLP tasks. However, their high model complexity requires enormous computation resources and extremely long training time for both pre-training and fine-tuning. Many works have studied model compression on large NLP models, but only focusing on reducing inference time while still requiring an expensive training process. Other works use extremely large batch sizes to shorten the pre-training time, at the expense of higher computational resource demands. In this paper, inspired by the Early-Bird Lottery Tickets recently studied for computer vision tasks, we propose EarlyBERT, a general computationally-efficient training algorithm applicable to both pre-training and fine-tuning of large-scale language models. By slimming the self-attention and fully-connected sub-layers inside a transformer, we are the first to identify structured winning tickets in the early stage of BERT training. We apply those tickets towards efficient BERT training, and conduct comprehensive pre-training and fine-tuning experiments on GLUE and SQuAD downstream tasks. Our results show that EarlyBERT achieves comparable performance to standard BERT, with 35 45% less training time. Code is available at https://github.com/VITA-Group/EarlyBERT.

2020

pdf bib
INSET: Sentence Infilling with INter-SEntential Transformer
Yichen Huang | Yizhe Zhang | Oussama Elachqar | Yu Cheng
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Missing sentence generation (or sentence in-filling) fosters a wide range of applications in natural language generation, such as document auto-completion and meeting note expansion. This task asks the model to generate intermediate missing sentences that can syntactically and semantically bridge the surrounding context. Solving the sentence infilling task requires techniques in natural language processing ranging from understanding to discourse-level planning to generation. In this paper, we propose a framework to decouple the challenge and address these three aspects respectively, leveraging the power of existing large-scale pre-trained models such as BERT and GPT-2. We empirically demonstrate the effectiveness of our model in learning a sentence representation for generation and further generating a missing sentence that fits the context.

pdf bib
Discourse-Aware Neural Extractive Text Summarization
Jiacheng Xu | Zhe Gan | Yu Cheng | Jingjing Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recently BERT has been adopted for document encoding in state-of-the-art text summarization models. However, sentence-based extractive models often result in redundant or uninformative phrases in the extracted summaries. Also, long-range dependencies throughout a document are not well captured by BERT, which is pre-trained on sentence pairs instead of documents. To address these issues, we present a discourse-aware neural summarization model - DiscoBert. DiscoBert extracts sub-sentential discourse units (instead of sentences) as candidates for extractive selection on a finer granularity. To capture the long-range dependencies among discourse units, structural discourse graphs are constructed based on RST trees and coreference mentions, encoded with Graph Convolutional Networks. Experiments show that the proposed model outperforms state-of-the-art methods by a significant margin on popular summarization benchmarks compared to other BERT-base models.

pdf bib
Distilling Knowledge Learned in BERT for Text Generation
Yen-Chun Chen | Zhe Gan | Yu Cheng | Jingzhou Liu | Jingjing Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Large-scale pre-trained language model such as BERT has achieved great success in language understanding tasks. However, it remains an open question how to utilize BERT for language generation. In this paper, we present a novel approach, Conditional Masked Language Modeling (C-MLM), to enable the finetuning of BERT on target generation tasks. The finetuned BERT (teacher) is exploited as extra supervision to improve conventional Seq2Seq models (student) for better text generation performance. By leveraging BERT’s idiosyncratic bidirectional nature, distilling knowledge learned in BERT can encourage auto-regressive Seq2Seq models to plan ahead, imposing global sequence-level supervision for coherent text generation. Experiments show that the proposed approach significantly outperforms strong Transformer baselines on multiple language generation tasks such as machine translation and text summarization. Our proposed model also achieves new state of the art on IWSLT German-English and English-Vietnamese MT datasets.

pdf bib
Cross-Thought for Sentence Encoder Pre-training
Shuohang Wang | Yuwei Fang | Siqi Sun | Zhe Gan | Yu Cheng | Jingjing Liu | Jing Jiang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this paper, we propose Cross-Thought, a novel approach to pre-training sequence encoder, which is instrumental in building reusable sequence embeddings for large-scale NLP tasks such as question answering. Instead of using the original signals of full sentences, we train a Transformer-based sequence encoder over a large set of short sequences, which allows the model to automatically select the most useful information for predicting masked words. Experiments on question answering and textual entailment tasks demonstrate that our pre-trained encoder can outperform state-of-the-art encoders trained with continuous sentence signals as well as traditional masked language modeling baselines. Our proposed approach also achieves new state of the art on HotpotQA (full-wiki setting) by improving intermediate information retrieval performance.

pdf bib
Contrastive Distillation on Intermediate Representations for Language Model Compression
Siqi Sun | Zhe Gan | Yuwei Fang | Yu Cheng | Shuohang Wang | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Existing language model compression methods mostly use a simple L_2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one. Although widely used, this objective by design assumes that all the dimensions of hidden representations are independent, failing to capture important structural knowledge in the intermediate layers of the teacher network. To achieve better distillation efficacy, we propose Contrastive Distillation on Intermediate Representations (CoDIR), a principled knowledge distillation framework where the student is trained to distill knowledge through intermediate layers of the teacher via a contrastive objective. By learning to distinguish positive sample from a large set of negative samples, CoDIR facilitates the student’s exploitation of rich information in teacher’s hidden layers. CoDIR can be readily applied to compress large-scale language models in both pre-training and finetuning stages, and achieves superb performance on the GLUE benchmark, outperforming state-of-the-art compression methods.

pdf bib
HERO: Hierarchical Encoder for Video+Language Omni-representation Pre-training
Linjie Li | Yen-Chun Chen | Yu Cheng | Zhe Gan | Licheng Yu | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present HERO, a novel framework for large-scale video+language omni-representation learning. HERO encodes multimodal inputs in a hierarchical structure, where local context of a video frame is captured by a Cross-modal Transformer via multimodal fusion, and global video context is captured by a Temporal Transformer. In addition to standard Masked Language Modeling (MLM) and Masked Frame Modeling (MFM) objectives, we design two new pre-training tasks: (i) Video-Subtitle Matching (VSM), where the model predicts both global and local temporal alignment; and (ii) Frame Order Modeling (FOM), where the model predicts the right order of shuffled video frames. HERO is jointly trained on HowTo100M and large-scale TV datasets to gain deep understanding of complex social dynamics with multi-character interactions. Comprehensive experiments demonstrate that HERO achieves new state of the art on multiple benchmarks over Text-based Video/Video-moment Retrieval, Video Question Answering (QA), Video-and-language Inference and Video Captioning tasks across different domains. We also introduce two new challenging benchmarks How2QA and How2R for Video QA and Retrieval, collected from diverse video content over multimodalities.

pdf bib
Multi-Fact Correction in Abstractive Text Summarization
Yue Dong | Shuohang Wang | Zhe Gan | Yu Cheng | Jackie Chi Kit Cheung | Jingjing Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Pre-trained neural abstractive summarization systems have dominated extractive strategies on news summarization performance, at least in terms of ROUGE. However, system-generated abstractive summaries often face the pitfall of factual inconsistency: generating incorrect facts with respect to the source text. To address this challenge, we propose Span-Fact, a suite of two factual correction models that leverages knowledge learned from question answering models to make corrections in system-generated summaries via span selection. Our models employ single or multi-masking strategies to either iteratively or auto-regressively replace entities in order to ensure semantic consistency w.r.t. the source text, while retaining the syntactic structure of summaries generated by abstractive summarization models. Experiments show that our models significantly boost the factual consistency of system-generated summaries without sacrificing summary quality in terms of both automatic metrics and human evaluation.

pdf bib
Contextual Text Style Transfer
Yu Cheng | Zhe Gan | Yizhe Zhang | Oussama Elachqar | Dianqi Li | Jingjing Liu
Findings of the Association for Computational Linguistics: EMNLP 2020

We introduce a new task, Contextual Text Style Transfer - translating a sentence into a desired style with its surrounding context taken into account. This brings two key challenges to existing style transfer approaches: (I) how to preserve the semantic meaning of target sentence and its consistency with surrounding context during transfer; (ii) how to train a robust model with limited labeled data accompanied by context. To realize high-quality style transfer with natural context preservation, we propose a Context-Aware Style Transfer (CAST) model, which uses two separate encoders for each input sentence and its surrounding context. A classifier is further trained to ensure contextual consistency of the generated sentence. To compensate for the lack of parallel data, additional self-reconstruction and back-translation losses are introduced to leverage non-parallel data in a semi-supervised fashion. Two new benchmarks, Enron-Context and Reddit-Context, are introduced for formality and offensiveness style transfer. Experimental results on these datasets demonstrate the effectiveness of the proposed CAST model over state-of-the-art methods across style accuracy, content preservation and contextual consistency metrics.

2019

pdf bib
Domain Adaptive Text Style Transfer
Dianqi Li | Yizhe Zhang | Zhe Gan | Yu Cheng | Chris Brockett | Bill Dolan | Ming-Ting Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Text style transfer without parallel data has achieved some practical success. However, in the scenario where less data is available, these methods may yield poor performance. In this paper, we examine domain adaptation for text style transfer to leverage massively available data from other domains. These data may demonstrate domain shift, which impedes the benefits of utilizing such data for training. To address this challenge, we propose simple yet effective domain adaptive text style transfer models, enabling domain-adaptive information exchange. The proposed models presumably learn from the source domain to: (i) distinguish stylized information and generic content information; (ii) maximally preserve content information; and (iii) adaptively transfer the styles in a domain-aware manner. We evaluate the proposed models on two style transfer tasks (sentiment and formality) over multiple target domains where only limited non-parallel data is available. Extensive experiments demonstrate the effectiveness of the proposed model compared to the baselines.

pdf bib
Patient Knowledge Distillation for BERT Model Compression
Siqi Sun | Yu Cheng | Zhe Gan | Jingjing Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Pre-trained language models such as BERT have proven to be highly effective for natural language processing (NLP) tasks. However, the high demand for computing resources in training such models hinders their application in practice. In order to alleviate this resource hunger in large-scale model training, we propose a Patient Knowledge Distillation approach to compress an original large model (teacher) into an equally-effective lightweight shallow network (student). Different from previous knowledge distillation methods, which only use the output from the last layer of the teacher network for distillation, our student model patiently learns from multiple intermediate layers of the teacher model for incremental knowledge extraction, following two strategies: (i) PKD-Last: learning from the last k layers; and (ii) PKD-Skip: learning from every k layers. These two patient distillation schemes enable the exploitation of rich information in the teacher’s hidden layers, and encourage the student model to patiently learn from and imitate the teacher through a multi-layer distillation process. Empirically, this translates into improved results on multiple NLP tasks with a significant gain in training efficiency, without sacrificing model accuracy.

pdf bib
Multi-step Reasoning via Recurrent Dual Attention for Visual Dialog
Zhe Gan | Yu Cheng | Ahmed Kholy | Linjie Li | Jingjing Liu | Jianfeng Gao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

This paper presents a new model for visual dialog, Recurrent Dual Attention Network (ReDAN), using multi-step reasoning to answer a series of questions about an image. In each question-answering turn of a dialog, ReDAN infers the answer progressively through multiple reasoning steps. In each step of the reasoning process, the semantic representation of the question is updated based on the image and the previous dialog history, and the recurrently-refined representation is used for further reasoning in the subsequent step. On the VisDial v1.0 dataset, the proposed ReDAN model achieves a new state-of-the-art of 64.47% NDCG score. Visualization on the reasoning process further demonstrates that ReDAN can locate context-relevant visual and textual clues via iterative refinement, which can lead to the correct answer step-by-step.

pdf bib
Adversarial Category Alignment Network for Cross-domain Sentiment Classification
Xiaoye Qu | Zhikang Zou | Yu Cheng | Yang Yang | Pan Zhou
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Cross-domain sentiment classification aims to predict sentiment polarity on a target domain utilizing a classifier learned from a source domain. Most existing adversarial learning methods focus on aligning the global marginal distribution by fooling a domain discriminator, without taking category-specific decision boundaries into consideration, which can lead to the mismatch of category-level features. In this work, we propose an adversarial category alignment network (ACAN), which attempts to enhance category consistency between the source domain and the target domain. Specifically, we increase the discrepancy of two polarity classifiers to provide diverse views, locating ambiguous features near the decision boundaries. Then the generator learns to create better features away from the category boundaries by minimizing this discrepancy. Experimental results on benchmark datasets show that the proposed method can achieve state-of-the-art performance and produce more discriminative features.

2018

pdf bib
Diverse Few-Shot Text Classification with Multiple Metrics
Mo Yu | Xiaoxiao Guo | Jinfeng Yi | Shiyu Chang | Saloni Potdar | Yu Cheng | Gerald Tesauro | Haoyu Wang | Bowen Zhou
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

We study few-shot learning in natural language domains. Compared to many existing works that apply either metric-based or optimization-based meta-learning to image domain with low inter-task variance, we consider a more realistic setting, where tasks are diverse. However, it imposes tremendous difficulties to existing state-of-the-art metric-based algorithms since a single metric is insufficient to capture complex task variations in natural language domain. To alleviate the problem, we propose an adaptive metric learning approach that automatically determines the best weighted combination from a set of metrics obtained from meta-training tasks for a newly seen few-shot task. Extensive quantitative evaluations on real-world sentiment analysis and dialog intent classification datasets demonstrate that the proposed method performs favorably against state-of-the-art few shot learning algorithms in terms of predictive accuracy. We make our code and data available for further study.

2015

pdf bib
Reducing infrequent-token perplexity via variational corpora
Yusheng Xie | Pranjal Daga | Yu Cheng | Kunpeng Zhang | Ankit Agrawal | Alok Choudhary
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

2014

pdf bib
Back to the Blocks World: Learning New Actions through Situated Human-Robot Dialogue
Lanbo She | Shaohua Yang | Yu Cheng | Yunyi Jia | Joyce Chai | Ning Xi
Proceedings of the 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL)