Yu-Chien Tang
2023
RSVP: Customer Intent Detection via Agent Response Contrastive and Generative Pre-Training
Yu-Chien Tang
|
Wei-Yao Wang
|
An-Zi Yen
|
Wen-Chih Peng
Findings of the Association for Computational Linguistics: EMNLP 2023
The dialogue systems in customer services have been developed with neural models to provide users with precise answers and round-the-clock support in task-oriented conversations by detecting customer intents based on their utterances. Existing intent detection approaches have highly relied on adaptively pre-training language models with large-scale datasets, yet the predominant cost of data collection may hinder their superiority. In addition, they neglect the information within the conversational responses of the agents, which have a lower collection cost, but are significant to customer intent as agents must tailor their replies based on the customers’ intent. In this paper, we propose RSVP, a self-supervised framework dedicated to task-oriented dialogues, which utilizes agent responses for pre-training in a two-stage manner. Specifically, we introduce two pre-training tasks to incorporate the relations of utterance-response pairs: 1) Response Retrieval by selecting a correct response from a batch of candidates, and 2) Response Generation by mimicking agents to generate the response to a given utterance. Our benchmark results for two real-world customer service datasets show that RSVP significantly outperforms the state-of-the-art baselines by 4.95% for accuracy, 3.4% for MRR@3, and 2.75% for MRR@5 on average. Extensive case studies are investigated to show the validity of incorporating agent responses into the pre-training stage.
2022
NYCU_TWD@LT-EDI-ACL2022: Ensemble Models with VADER and Contrastive Learning for Detecting Signs of Depression from Social Media
Wei-Yao Wang
|
Yu-Chien Tang
|
Wei-Wei Du
|
Wen-Chih Peng
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion
This paper presents a state-of-the-art solution to the LT-EDI-ACL 2022 Task 4: Detecting Signs of Depression from Social Media Text. The goal of this task is to detect the severity levels of depression of people from social media posts, where people often share their feelings on a daily basis. To detect the signs of depression, we propose a framework with pre-trained language models using rich information instead of training from scratch, gradient boosting and deep learning models for modeling various aspects, and supervised contrastive learning for the generalization ability. Moreover, ensemble techniques are also employed in consideration of the different advantages of each method. Experiments show that our framework achieves a 2nd prize ranking with a macro F1-score of 0.552, showing the effectiveness and robustness of our approach.