Yu Dong

Also published as:


2024

pdf bib
文本样式和主题框架引导下的大模型辅助儿童新闻生成(Text Styles and Thematic Framework Guided Large Modeling to Aid Children’s News Generation)
Du Xiaomeng (杜晓蒙) | Yu Dong (于东) | Liu Pengyuan (刘鹏远)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“主流新闻内容多针对成年人设计,不易于儿童理解,难以满足其阅读需求。对此,我们提出了一种基于主题的儿童新闻篇章结构框架(TNC-LLM)。该框架融合了文本样式定义(TSD)和主题类别定义(TCD)两大核心模块,TSD模块采用多种机器学习算法,从不同粒度分析文本样式风格和段落布局等特点,TCD模块针对不同主题进行了内容分析,以揭示儿童新闻的写作特点和内容的倾向性,确保内容的教育性和适宜性。本文实验主要评估了ChatGPT3.5等四个模型在将成年人新闻转换为面向儿童的新闻的性能。实验结果表明,TNC-LLM在儿童新闻内容生成任务中对内容的准确性、文本的趣味性以及教育性等关键维度有显著提升。此外,该框架具有普适性,能够应用于不同类型的大型语言模型。”

pdf bib
中西谚语多元价值观资源库建设及对比研究(The construction and comparative study of the resource library of Chinese and Western proverbs and multiple values)
Du Xia (杜霞) | Liu Pengyuan (刘鹏远) | Yu Dong (于东)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“中西方谚语是中西方文化的结晶,分别蕴含着中西方文化中最基本的价值观。但目前缺乏中西方谚语价值观资源,难以对谚语所体现的中西方价值观进行全面的研究,特别是定量对比研究。因此本文设计了多元价值观体系,包含动机及需求、共同及特色价值观、价值判断和使用场景,根据这个体系构建了中西方谚语多元价值观资源库并进行了考察与对比分析。本文发现中西谚语在价值判断、使用场景及部分价值观上具有相似性,在具体内涵表达上各具独特性。”

pdf bib
大语言模型开放性生成文本中的职业性别偏见研究(Generated by Large Language Models)
Zhang Xu (张旭) | Guo Mengqing (郭梦清) | Zhu Shucheng (朱述承) | Yu Dong (于东) | Liu Ying (刘颖) | Liu Pengyuan (刘鹏远)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“大语言模型问世以来,在自然语言处理诸多任务上都取得了惊人的表现。但其中可能存在的安全性和公平性问题也引起了人们的重视,特别是模型生成文本可能含有对特定职业、性别等群体的偏见和歧视。本文通过两种性别表征形式,构造了显性和隐性的”性别+职业“提示语,提示大语言模型生成开放性文本,并从情感极性、词汇丰富度和冒犯性程度三个维度对生成文本的偏见进行分析,评估并比较了传统模型与以ChatGPT为代表的大语言模型中的职业显性性别和隐性性别交叉偏见。结果表明,比起单维度的职业、性别身份信息,更复杂的职业性别交叉身份信息会减少ChatGPT生成文本中的偏见,具体表现为情感极性趋于中性,词汇丰富度提高;ChatGPT对于不同类型的职业性别身份展现出差异的态度,对研究型、艺术型等创造类的职业情感极性更高,对事务型、经管型等与人打交道的职业情感极性偏低;另外,ChatGPT相比之前的GPT-2模型在生成能力和消除偏见上有所进步,在多种组合身份提示下的生成文本更加积极、多样,冒犯性内容显著减少。”

pdf bib
基于领域信息分解式学习的大语言模型修辞认知增强方法(Method for Enhancing Rhetorical Cognition of Large Language Models Based on Decomposed Learning of Field Information)
Wang Wen (王雯) | Yu Dong (于东) | Liu Pengyuan (刘鹏远)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“中文修辞手法多样且概念差异性大,大语言模型对部分修辞手法的认知存在缺陷。针对该问题,本文研究如何增强大语言模型的修辞认知能力,并探究其与修辞识别性能之间的关系。为此,本文提出了QAKAG框架,此框架首先引入信息分解式学习思想,通过问答形式检测大语言模型的修辞认知缺陷,然后以四种不同的知识组合方式探究最优信息补充机制,实现了大语言模型修辞认知能力的增强。本文构建了多类别中文修辞句数据集MCRSD和修辞知识库MCRKB,并在ChatGPT4等六个大语言模型上开展实验研究,验证了QAKAG框架对增强大语言模型修辞认知能力的有效性以及其各阶段的必要性。结果表明,在QAKAG框架的增强下,六个大语言模型在多类别修辞识别任务上的性能相较直接回答识别问题的平均F1值提高22.1%,优于Zero-shot-CoT、RAG-BaiKe、Few-Shot5提示策略。”

pdf bib
Enhancing Free-Form Table Question Answering Models by Distilling Relevant-Cell-Based Rationales
Yang Zhiyu | Wang Shuo | Yan Yukun | Liu Pengyuan | Yu Dong
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“Free-form table question answering is a challenging task since tables contain structured contentscompared to plain texts, which requires high-level reasoning abilities to effectively identify cellsthat are relevant to the question and produce a correct and faithful answer based on their relations.Large language models (LLMs) have exhibited remarkable reasoning capabilities in numerousNLP applications. However, in some specific tasks, specially-trained small models can still out-perform LLMs. Furthermore, small models require extremely less computation costs comparedto LLMs. To leverage the strengths of both types of models, we propose a Relevant-Cell-basedKnowledge Distillation with inference-time Teacher Guidance (RCKD-TG) method. This ap-proach aims to combine small free-form table question answering models’ abilities to learn fromhuman annotations and large language models’ abilities to effectively reason from table contents,via applying Relevant-Cell-based rationales distilled from LLMs to small models’ training andinference stages. Our experiments demonstrate the superiority of our method over vanilla smallmodels in correctness, faithfulness, adequacy and fluency, also over general LLMs in adheringto the style of human annotations. We achieve state-of-the-art performance on FeTaQA, a rep-resentative free-form table question answering benchmark. Our result of a 41.3 BLEU scoredemonstrates the feasibility of effectively using small models’ task-specific abilities and LLMs’reasoning capabilities at the same time. Additionally, our method exhibits high computation ef-ficiency and data efficiency. Compared to strong baselines, we achieve better performance withsignificantly less training data.”

pdf bib
Generate-then-Revise: An Effective Synthetic Training Data Generation Framework For Event Detection Retrieval
Du Huidong | Sun Hao | Liu Pengyuan | Yu Dong
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“Large language models (LLMs) struggle with event detection (ED) due to the structured and vari-able number of events in the output. Existing supervised approaches rely on a large amount ofmanually annotated corpora, facing challenges in practice when event types are diverse and theannotated data is scarce. We propose Generate-then-Revise (GtR), a framework that leveragesLLMs in the opposite direction to address these challenges in ED. GtR utilizes an LLM to gen-erate high-quality training data in three stages, including a novel data revision step to minimizenoise in the synthetic data. The generated data is then used to train a smaller model for evalua-tion. Our approach demonstrates significant improvements on the low-resource ED. We furtheranalyze the generated data, highlighting the potential of synthetic data generation for enhancingED performance.Introduction”

pdf bib
人类思维指导下大小模型协同决策的中文修辞识别与理解方法
Wang Wen (王雯) | Tang Siyi (汤思怡) | Yu Dong (于东) | Liu Pengyuan (刘鹏远)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“CCL24-Eval任务6提出了一个多层次、细粒度中小学作文修辞识别与理解任务。针对任务特点,本文提出了人类思维指导下大小模型协同决策的中文修辞识别与理解方法。该方法根据人类在面对修辞识别和理解任务时的处理思路,将任务顺序重新定义,并分别选取大小语言模型,使每个步骤的实现效果均达到局部最优,以局部最优达到整体任务的最优效果。结果表明,本文提出的方法能够有效对修辞进行识别与理解,在三个赛道上相较于Baseline方法分别提升了13.54、4.03、57.11。”

pdf bib
Bridging the Gap between Authentic and Answer-Guided Images for Chinese Vision-Language Understanding Enhancement
Wang Feiyu | Guo Wenyu | Yu Dong | Kang Chen | Liu Pengyuan
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“The objective of the Chinese Vision-Language Understanding Evaluation (CVLUE) is to comprehensively assess the performance of Chinese vision-language multimodal pre-trained models in multimodal modeling and understanding across four tasks: Image-Text Retrieval, Visual Question Answering, Visual Grounding, and Visual Dialog. To enhance the models’ performance across various multimodal tasks, this paper propose a multimodal information understanding enhancement method based on answer-guided images. Firstly, we propose task-specific methods for answer-guided image generation. Secondly, the authentic and answer-guided images are fed into the model for multimodal fine-tuning, respectively. Finally, training objectives are set for different tasks to minimize the gap between the answer-guided images and authentic images, thereby supervising the results produced by the authentic images utlizing answer-guided images. The experimental results demonstrate the effectiveness of the proposed method.”