Studies of human psychology have demonstrated that people are more motivated to extend empathy to in-group members than out-group members (Cikara et al., 2011). In this study, we investigate how this aspect of intergroup relations in humans is replicated by LLMs in an emotion intensity prediction task. In this task, the LLM is given a short description of an experience a person had that caused them to feel a particular emotion; the LLM is then prompted to predict the intensity of the emotion the person experienced on a numerical scale. By manipulating the group identities assigned to the LLM’s persona (the “perceiver”) and the person in the narrative (the “experiencer”), we measure how predicted emotion intensities differ between in-group and out-group settings. We observe that LLMs assign higher emotion intensity scores to in-group members than out-group members. This pattern holds across all three types of social groupings we tested: race/ethnicity, nationality, and religion. We perform an in-depth analysis on Llama-3.1-8B, the model which exhibited strongest intergroup bias among those tested.
Multimodal counterfactual reasoning is a vital yet challenging ability for AI systems. It involves predicting the outcomes of hypothetical circumstances based on vision and language inputs, which enables AI models to learn from failures and explore hypothetical scenarios. Despite its importance, there are only a few datasets targeting the counterfactual reasoning abilities of multimodal models. Among them, they only cover reasoning over synthetic environments or specific types of events (e.g. traffic collisions), making them hard to reliably benchmark the model generalization ability in diverse real-world scenarios and reasoning dimensions. To overcome these limitations, we develop a video question answering dataset, ACQUIRED: it consists of 3.9K annotated videos, encompassing a wide range of event types and incorporating both first and third-person viewpoints, which ensures a focus on real-world diversity. In addition, each video is annotated with questions that span three distinct dimensions of reasoning, including physical, social, and temporal, which can comprehensively evaluate the model counterfactual abilities along multiple aspects. We benchmark our dataset against several state-of-the-art language-only and multimodal models and experimental results demonstrate a significant performance gap (>13%) between models and humans. The findings suggest that multimodal counterfactual reasoning remains an open challenge and ACQUIRED is a comprehensive and reliable benchmark for inspiring future research in this direction.
Recent studies show that Natural Language Processing (NLP) technologies propagate societal biases about demographic groups associated with attributes such as gender, race, and nationality. To create interventions and mitigate these biases and associated harms, it is vital to be able to detect and measure such biases. While existing works propose bias evaluation and mitigation methods for various tasks, there remains a need to cohesively understand the biases and the specific harms they measure, and how different measures compare with each other. To address this gap, this work presents a practical framework of harms and a series of questions that practitioners can answer to guide the development of bias measures. As a validation of our framework and documentation questions, we also present several case studies of how existing bias measures in NLP—both intrinsic measures of bias in representations and extrinsic measures of bias of downstream applications—can be aligned with different harms and how our proposed documentation questions facilitates more holistic understanding of what bias measures are measuring.