Yu-Neng Chuang


2024

pdf bib
Secure Your Model: An Effective Key Prompt Protection Mechanism for Large Language Models
Ruixiang Tang | Yu-Neng Chuang | Xuanting Cai | Mengnan Du | Xia Hu
Findings of the Association for Computational Linguistics: NAACL 2024

Large language models (LLMs) have notably revolutionized many domains within natural language processing due to their exceptional performance. Their security has become increasingly vital. This study is centered on protecting LLMs against unauthorized access and potential theft. We propose a simple yet effective protective measure wherein a unique key prompt is embedded within the LLM. This mechanism enables the model to respond only when presented with the correct key prompt; otherwise, LLMs will refuse to react to any input instructions. This key prompt protection offers a robust solution to prevent the unauthorized use of LLMs, as the model becomes unusable without the correct key. We evaluated the proposed protection on multiple LLMs and NLP tasks. Results demonstrate that our method can successfully protect the LLM without significantly impacting the model’s original function. Moreover, we demonstrate potential attacks that attempt to bypass the protection mechanism will adversely affect the model’s performance, further emphasizing the effectiveness of the proposed protection method.

pdf bib
Learning to Compress Prompt in Natural Language Formats
Yu-Neng Chuang | Tianwei Xing | Chia-Yuan Chang | Zirui Liu | Xun Chen | Xia Hu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Large language models (LLMs) are great at processing multiple natural language processing tasks, but their abilities are constrained by inferior performance with long context, slow inference speed, and the high cost of computing the results. Deploying LLMs with precise and informative context helps users process large-scale datasets more effectively and cost-efficiently. Existing works rely on compressing long prompt contexts into soft prompts. However, soft prompt compression encounters limitations in transferability across different LLMs, especially API-based LLMs. To this end, this work aims to compress lengthy prompts in the form of natural language with LLM transferability. This poses two challenges: (i) Natural Language (NL) prompts are incompatible with back-propagation, and (ii) NL prompts lack flexibility in imposing length constraints. In this work, we propose a Natural Language Prompt Encapsulation (Nano-Capsulator) framework compressing original prompts into NL formatted Capsule Prompt while maintaining prompt utility and transferability. Specifically, to tackle the first challenge, the Nano-Capsulator is optimized by a reward function that interacts with the proposed semantics preserving loss. To address the second question, the Nano-Capsulator is optimized by a reward function featuring length constraints. Experimental results demonstrate that the Capsule Prompt can reduce 81.4% of the original length, decrease inference latency up to 4.5x, and save 80.1% of budget overheads while providing transferability across diverse LLMs and different datasets.