Yu Wan


2024

pdf bib
Rethinking the Exploitation of Monolingual Data for Low-Resource Neural Machine Translation
Jianhui Pang | Baosong Yang* | Derek Fai Wong* | Yu Wan | Dayiheng Liu | Lidia Sam Chao | Jun Xie
Computational Linguistics, Volume 50, Issue 1 - March 2024

The utilization of monolingual data has been shown to be a promising strategy for addressing low-resource machine translation problems. Previous studies have demonstrated the effectiveness of techniques such as back-translation and self-supervised objectives, including masked language modeling, causal language modeling, and denoise autoencoding, in improving the performance of machine translation models. However, the manner in which these methods contribute to the success of machine translation tasks and how they can be effectively combined remains an under-researched area. In this study, we carry out a systematic investigation of the effects of these techniques on linguistic properties through the use of probing tasks, including source language comprehension, bilingual word alignment, and translation fluency. We further evaluate the impact of pre-training, back-translation, and multi-task learning on bitexts of varying sizes. Our findings inform the design of more effective pipelines for leveraging monolingual data in extremely low-resource and low-resource machine translation tasks. Experiment results show consistent performance gains in seven translation directions, which provide further support for our conclusions and understanding of the role of monolingual data in machine translation.

2022

pdf bib
UniTE: Unified Translation Evaluation
Yu Wan | Dayiheng Liu | Baosong Yang | Haibo Zhang | Boxing Chen | Derek Wong | Lidia Chao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Translation quality evaluation plays a crucial role in machine translation. According to the input format, it is mainly separated into three tasks, i.e., reference-only, source-only and source-reference-combined. Recent methods, despite their promising results, are specifically designed and optimized on one of them. This limits the convenience of these methods, and overlooks the commonalities among tasks. In this paper, we propose , which is the first unified framework engaged with abilities to handle all three evaluation tasks. Concretely, we propose monotonic regional attention to control the interaction among input segments, and unified pretraining to better adapt multi-task training. We testify our framework on WMT 2019 Metrics and WMT 2020 Quality Estimation benchmarks. Extensive analyses show that our single model can universally surpass various state-of-the-art or winner methods across tasks.Both source code and associated models are available at https://github.com/NLP2CT/UniTE.

pdf bib
Attention Mechanism with Energy-Friendly Operations
Yu Wan | Baosong Yang | Dayiheng Liu | Rong Xiao | Derek Wong | Haibo Zhang | Boxing Chen | Lidia Chao
Findings of the Association for Computational Linguistics: ACL 2022

Attention mechanism has become the dominant module in natural language processing models. It is computationally intensive and depends on massive power-hungry multiplications. In this paper, we rethink variants of attention mechanism from the energy consumption aspects. After reaching the conclusion that the energy costs of several energy-friendly operations are far less than their multiplication counterparts, we build a novel attention model by replacing multiplications with either selective operations or additions. Empirical results on three machine translation tasks demonstrate that the proposed model, against the vanilla one, achieves competitable accuracy while saving 99% and 66% energy during alignment calculation and the whole attention procedure. Our code will be released upon the acceptance.

pdf bib
Challenges of Neural Machine Translation for Short Texts
Yu Wan | Baosong Yang | Derek Fai Wong | Lidia Sam Chao | Liang Yao | Haibo Zhang | Boxing Chen
Computational Linguistics, Volume 48, Issue 2 - June 2022

Short texts (STs) present in a variety of scenarios, including query, dialog, and entity names. Most of the exciting studies in neural machine translation (NMT) are focused on tackling open problems concerning long sentences rather than short ones. The intuition behind is that, with respect to human learning and processing, short sequences are generally regarded as easy examples. In this article, we first dispel this speculation via conducting preliminary experiments, showing that the conventional state-of-the-art NMT approach, namely, Transformer (Vaswani et al. 2017), still suffers from over-translation and mistranslation errors over STs. After empirically investigating the rationale behind this, we summarize two challenges in NMT for STs associated with translation error types above, respectively: (1) the imbalanced length distribution in training set intensifies model inference calibration over STs, leading to more over-translation cases on STs; and (2) the lack of contextual information forces NMT to have higher data uncertainty on short sentences, and thus NMT model is troubled by considerable mistranslation errors. Some existing approaches, like balancing data distribution for training (e.g., data upsampling) and complementing contextual information (e.g., introducing translation memory) can alleviate the translation issues in NMT for STs. We encourage researchers to investigate other challenges in NMT for STs, thus reducing ST translation errors and enhancing translation quality.

pdf bib
Alibaba-Translate China’s Submission for WMT2022 Metrics Shared Task
Yu Wan | Keqin Bao | Dayiheng Liu | Baosong Yang | Derek F. Wong | Lidia S. Chao | Wenqiang Lei | Jun Xie
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this report, we present our submission to the WMT 2022 Metrics Shared Task. We build our system based on the core idea of UNITE (Unified Translation Evaluation), which unifies source-only, reference-only, and source- reference-combined evaluation scenarios into one single model. Specifically, during the model pre-training phase, we first apply the pseudo-labeled data examples to continuously pre-train UNITE. Notably, to reduce the gap between pre-training and fine-tuning, we use data cropping and a ranking-based score normalization strategy. During the fine-tuning phase, we use both Direct Assessment (DA) and Multidimensional Quality Metrics (MQM) data from past years’ WMT competitions. Specially, we collect the results from models with different pre-trained language model backbones, and use different ensembling strategies for involved translation directions.

pdf bib
Alibaba-Translate China’s Submission for WMT 2022 Quality Estimation Shared Task
Keqin Bao | Yu Wan | Dayiheng Liu | Baosong Yang | Wenqiang Lei | Xiangnan He | Derek F. Wong | Jun Xie
Proceedings of the Seventh Conference on Machine Translation (WMT)

In this paper, we present our submission to the sentence-level MQM benchmark at Quality Estimation Shared Task, named UniTE (Unified Translation Evaluation). Specifically, our systems employ the framework of UniTE, which combined three types of input formats during training with a pre-trained language model. First, we apply the pseudo-labeled data examples for the continuously pre-training phase. Notably, to reduce the gap between pre-training and fine-tuning, we use data cropping and a ranking-based score normalization strategy. For the fine-tuning phase, we use both Direct Assessment (DA) and Multidimensional Quality Metrics (MQM) data from past years’ WMT competitions. Finally, we collect the source-only evaluation results, and ensemble the predictions generated by two UniTE models, whose backbones are XLM-R and infoXLM, respectively. Results show that our models reach 1st overall ranking in the Multilingual and English-Russian settings, and 2nd overall ranking in English-German and Chinese-English settings, showing relatively strong performances in this year’s quality estimation competition.

2021

pdf bib
RoBLEURT Submission for WMT2021 Metrics Task
Yu Wan | Dayiheng Liu | Baosong Yang | Tianchi Bi | Haibo Zhang | Boxing Chen | Weihua Luo | Derek F. Wong | Lidia S. Chao
Proceedings of the Sixth Conference on Machine Translation

In this paper, we present our submission to Shared Metrics Task: RoBLEURT (Robustly Optimizing the training of BLEURT). After investigating the recent advances of trainable metrics, we conclude several aspects of vital importance to obtain a well-performed metric model by: 1) jointly leveraging the advantages of source-included model and reference-only model, 2) continuously pre-training the model with massive synthetic data pairs, and 3) fine-tuning the model with data denoising strategy. Experimental results show that our model reaching state-of-the-art correlations with the WMT2020 human annotations upon 8 out of 10 to-English language pairs.

2020

pdf bib
Uncertainty-Aware Curriculum Learning for Neural Machine Translation
Yikai Zhou | Baosong Yang | Derek F. Wong | Yu Wan | Lidia S. Chao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural machine translation (NMT) has proven to be facilitated by curriculum learning which presents examples in an easy-to-hard order at different training stages. The keys lie in the assessment of data difficulty and model competence. We propose uncertainty-aware curriculum learning, which is motivated by the intuition that: 1) the higher the uncertainty in a translation pair, the more complex and rarer the information it contains; and 2) the end of the decline in model uncertainty indicates the completeness of current training stage. Specifically, we serve cross-entropy of an example as its data difficulty and exploit the variance of distributions over the weights of the network to present the model uncertainty. Extensive experiments on various translation tasks reveal that our approach outperforms the strong baseline and related methods on both translation quality and convergence speed. Quantitative analyses reveal that the proposed strategy offers NMT the ability to automatically govern its learning schedule.

pdf bib
Self-Paced Learning for Neural Machine Translation
Yu Wan | Baosong Yang | Derek F. Wong | Yikai Zhou | Lidia S. Chao | Haibo Zhang | Boxing Chen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Recent studies have proven that the training of neural machine translation (NMT) can be facilitated by mimicking the learning process of humans. Nevertheless, achievements of such kind of curriculum learning rely on the quality of artificial schedule drawn up with the handcrafted features, e.g. sentence length or word rarity. We ameliorate this procedure with a more flexible manner by proposing self-paced learning, where NMT model is allowed to 1) automatically quantify the learning confidence over training examples; and 2) flexibly govern its learning via regulating the loss in each iteration step. Experimental results over multiple translation tasks demonstrate that the proposed model yields better performance than strong baselines and those models trained with human-designed curricula on both translation quality and convergence speed.