Yuan Cao


2024

pdf bib
Can Public Large Language Models Help Private Cross-device Federated Learning?
Boxin Wang | Yibo Zhang | Yuan Cao | Bo Li | Hugh McMahan | Sewoong Oh | Zheng Xu | Manzil Zaheer
Findings of the Association for Computational Linguistics: NAACL 2024

We study (differentially) private federated learning (FL) of language models. The language models in cross-device FL are relatively small, which can be trained with meaningful formal user-level differential privacy (DP) guarantees when massive parallelism in training is enabled by the participation of a moderate size of users. Recently, public data has been used to improve privacy-utility trade-offs for both large and small language models. In this work, we provide a systematic study of using large-scale public data and LLMs to help differentially private training of on-device FL models, and further improve the privacy-utility tradeoff by techniques of distillation. Moreover, we propose a novel distribution matching algorithm with theoretical grounding to sample public data close to private data distribution, which significantly improves the sample efficiency of (pre-)training on public data. The proposed method is efficient and effective for training private models by taking advantage of public data, especially for customized on-device architectures that do not have ready-touse pre-trained models.

2023

pdf bib
DSTC-11: Speech Aware Task-Oriented Dialog Modeling Track
Hagen Soltau | Izhak Shafran | Mingqiu Wang | Abhinav Rastogi | Wei Han | Yuan Cao
Proceedings of The Eleventh Dialog System Technology Challenge

Most research on task oriented dialog modeling is based on written text input. However, users interact with practical dialog systems often using speech as input. Typically, systems convert speech into text using an Automatic Speech Recognition (ASR) system, introducing errors. Furthermore, these systems do not address the differences in written and spoken language. The research on this topic is stymied by the lack of a public corpus. Motivated by these considerations, our goal in hosting the speech-aware dialog state tracking challenge was to create a public corpus or task which can be used to investigate the performance gap between the written and spoken forms of input, develop models that could alleviate this gap, and establish whether Text-to-Speech-based (TTS) systems is a reasonable surrogate to the more-labor intensive human data collection. We created three spoken versions of the popular written-domain MultiWoz task – (a) TTS-Verbatim: written user inputs were converted into speech waveforms using a TTS system, (b) Human-Verbatim: humans spoke the user inputs verbatim, and (c) Human-paraphrased: humans paraphrased the user inputs. Additionally, we provided different forms of ASR output to encourage wider participation from teams that may not have access to state-of-the-art ASR systems. These included ASR transcripts, word time stamps, and latent representations of the audio (audio encoder outputs). In this paper, we describe the corpus, report results from participating teams, provide preliminary analyses of their results, and summarize the current state-of-the-art in this domain.

pdf bib
AnyTOD: A Programmable Task-Oriented Dialog System
Jeffrey Zhao | Yuan Cao | Raghav Gupta | Harrison Lee | Abhinav Rastogi | Mingqiu Wang | Hagen Soltau | Izhak Shafran | Yonghui Wu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We propose AnyTOD, an end-to-end, zero-shot task-oriented dialog (TOD) system capable of zero-shot adaptation onto unseen tasks or domains. We view TOD as a program executed by a language model (LM), where program logic and ontology is provided by a designer as a schema. To enable generalization to unseen schemas and programs without prior training, AnyTOD adopts a neuro-symbolic approach. A neural LM keeps track of events that occur during a conversation, and a symbolic program implementing dialog policy is executed to recommend actions AnyTOD should take. This approach drastically reduces data annotation and model training requirements, addressing the enduring challenge of rapidly adapting a TOD system to unseen tasks and domains. We demonstrate state-of-the-art results on STAR, ABCD and SGD benchmarks. We also demonstrate strong zero-shot transfer ability in low-resource settings, such as zero-shot transfer onto MultiWOZ. In addition, we release STARv2, an updated version of the STAR dataset with richer annotations, for benchmarking zero-shot task transfer for end-to-end TOD models.

pdf bib
MUX-PLMs: Data Multiplexing for High-throughput Language Models
Vishvak Murahari | Ameet Deshpande | Carlos Jimenez | Izhak Shafran | Mingqiu Wang | Yuan Cao | Karthik Narasimhan
Findings of the Association for Computational Linguistics: EMNLP 2023

The widespread adoption of large language models such as ChatGPT and Bard has led to unprecedented demand for these technologies. The burgeoning cost of inference for ever-increasing model sizes coupled with hardware shortages has limited affordable access and poses a pressing need for efficiency approaches geared towards high throughput and performance. Multi-input multi-output (MIMO) algorithms such as data multiplexing, offer a promising solution with a many-fold increase in throughput by performing inference for multiple inputs at the cost of a single input. Yet these approaches are not currently performant enough to be deployed in modern systems. We change that by developing MUX-PLMs, a class of high throughput pre-trained language models (PLMs) trained with data multiplexing, that can be fine-tuned for any downstream task to yield high-throughput high-performance. Our novel multiplexing and demultiplexing modules proficiently entangle and disentangle inputs, and enable high-performance high throughput MUX-PLMs that are competitive with vanilla PLMs while achieving 2x/5x inference speedup with only a 1-4 % drop on a broad suite of tasks.

pdf bib
MUX-PLMs: Pre-training Language Models with Data Multiplexing
Vishvak Murahari | Ameet Deshpande | Carlos Jimenez | Izhak Shafran | Mingqiu Wang | Yuan Cao | Karthik Narasimhan
Proceedings of the 8th Workshop on Representation Learning for NLP (RepL4NLP 2023)

The widespread adoption of large language models such as ChatGPT and Bard has led to unprecedented demand for these technologies. The burgeoning cost of inference for ever-increasing model sizes coupled with hardware shortages has limited affordable access and poses a pressing need for efficiency approaches geared towards high throughput and performance. Multi-input multi-output (MIMO) algorithms such as data multiplexing, offer a promising solution with a many-fold increase in throughput by performing inference for multiple inputs at the cost of a single input. Yet these approaches are not currently performant enough to be deployed in modern systems. We change that by developing MUX-PLMs, a class of high throughput pre-trained language models (PLMs) trained with data multiplexing, that can be fine-tuned for any downstream task to yield high-throughput high-performance. Our novel multiplexing and demultiplexing modules proficiently entangle and disentangle inputs, and enable high-performance high throughput that are competitive with vanilla PLMs while achieving 2x/5x inference speedup with only a 1−4% drop on a broad suite of tasks.

2022

pdf bib
Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation
Yong Cheng | Ankur Bapna | Orhan Firat | Yuan Cao | Pidong Wang | Wolfgang Macherey
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multilingual neural machine translation models are trained to maximize the likelihood of a mix of examples drawn from multiple language pairs. The dominant inductive bias applied to these models is a shared vocabulary and a shared set of parameters across languages; the inputs and labels corresponding to examples drawn from different language pairs might still reside in distinct sub-spaces. In this paper, we introduce multilingual crossover encoder-decoder (mXEncDec) to fuse language pairs at an instance level. Our approach interpolates instances from different language pairs into joint ‘crossover examples’ in order to encourage sharing input and output spaces across languages. To ensure better fusion of examples in multilingual settings, we propose several techniques to improve example interpolation across dissimilar languages under heavy data imbalance. Experiments on a large-scale WMT multilingual dataset demonstrate that our approach significantly improves quality on English-to-Many, Many-to-English and zero-shot translation tasks (from +0.5 BLEU up to +5.5 BLEU points). Results on code-switching sets demonstrate the capability of our approach to improve model generalization to out-of-distribution multilingual examples. We also conduct qualitative and quantitative representation comparisons to analyze the advantages of our approach at the representation level.

pdf bib
Knowledge-grounded Dialog State Tracking
Dian Yu | Mingqiu Wang | Yuan Cao | Laurent El Shafey | Izhak Shafran | Hagen Soltau
Findings of the Association for Computational Linguistics: EMNLP 2022

Knowledge (including structured knowledge such as schema and ontology and unstructured knowledge such as web corpus) is a critical part of dialog understanding, especially for unseen tasks and domains. Traditionally, such domain-specific knowledge is encoded implicitly into model parameters for the execution of downstream tasks, which makes training inefficient. In addition , such models are not easily transferable to new tasks with different schemas. In this work, we propose to perform dialog state tracking grounded on knowledge encoded externally. We query relevant knowledge of various forms based on the dialog context where such information can grounds the prediction of dialog states. We demonstrate superior performance of our proposed method over strong baselines, especially in the few-shot learning setting.

pdf bib
Unsupervised Slot Schema Induction for Task-oriented Dialog
Dian Yu | Mingqiu Wang | Yuan Cao | Izhak Shafran | Laurent Shafey | Hagen Soltau
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Carefully-designed schemas describing how to collect and annotate dialog corpora are a prerequisite towards building task-oriented dialog systems. In practical applications, manually designing schemas can be error-prone, laborious, iterative, and slow, especially when the schema is complicated. To alleviate this expensive and time consuming process, we propose an unsupervised approach for slot schema induction from unlabeled dialog corpora. Leveraging in-domain language models and unsupervised parsing structures, our data-driven approach extracts candidate slots without constraints, followed by coarse-to-fine clustering to induce slot types. We compare our method against several strong supervised baselines, and show significant performance improvement in slot schema induction on MultiWoz and SGD datasets. We also demonstrate the effectiveness of induced schemas on downstream applications including dialog state tracking and response generation.

pdf bib
Show, Don’t Tell: Demonstrations Outperform Descriptions for Schema-Guided Task-Oriented Dialogue
Raghav Gupta | Harrison Lee | Jeffrey Zhao | Yuan Cao | Abhinav Rastogi | Yonghui Wu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Building universal dialogue systems that operate across multiple domains/APIs and generalize to new ones with minimal overhead is a critical challenge. Recent works have leveraged natural language descriptions of schema elements to enable such systems; however, descriptions only indirectly convey schema semantics. In this work, we propose Show, Don’t Tell, which prompts seq2seq models with a labeled example dialogue to show the semantics of schema elements rather than tell the model through descriptions. While requiring similar effort from service developers as generating descriptions, we show that using short examples as schema representations with large language models results in state-of-the-art performance on two popular dialogue state tracking benchmarks designed to measure zero-shot generalization - the Schema-Guided Dialogue dataset and the MultiWOZ leave-one-out benchmark.

2021

pdf bib
Effective Sequence-to-Sequence Dialogue State Tracking
Jeffrey Zhao | Mahdis Mahdieh | Ye Zhang | Yuan Cao | Yonghui Wu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-training objectives as well as the formats of context representations. We demonstrate that the choice of pre-training objective makes a significant difference to the state tracking quality. In particular, we find that masked span prediction is more effective than auto-regressive language modeling. We also explore using Pegasus, a span prediction-based pre-training objective for text summarization, for the state tracking model. We found that pre-training for the seemingly distant summarization task works surprisingly well for dialogue state tracking. In addition, we found that while recurrent state context representation works also reasonably well, the model may have a hard time recovering from earlier mistakes. We conducted experiments on the MultiWOZ 2.1-2.4, WOZ 2.0, and DSTC2 datasets with consistent observations.

pdf bib
Deciphering Undersegmented Ancient Scripts Using Phonetic Prior
Jiaming Luo | Frederik Hartmann | Enrico Santus | Regina Barzilay | Yuan Cao
Transactions of the Association for Computational Linguistics, Volume 9

Most undeciphered lost languages exhibit two characteristics that pose significant decipherment challenges: (1) the scripts are not fully segmented into words; (2) the closest known language is not determined. We propose a decipherment model that handles both of these challenges by building on rich linguistic constraints reflecting consistent patterns in historical sound change. We capture the natural phonological geometry by learning character embeddings based on the International Phonetic Alphabet (IPA). The resulting generative framework jointly models word segmentation and cognate alignment, informed by phonological constraints. We evaluate the model on both deciphered languages (Gothic, Ugaritic) and an undeciphered one (Iberian). The experiments show that incorporating phonetic geometry leads to clear and consistent gains. Additionally, we propose a measure for language closeness which correctly identifies related languages for Gothic and Ugaritic. For Iberian, the method does not show strong evidence supporting Basque as a related language, concurring with the favored position by the current scholarship.1

2020

pdf bib
Leveraging Monolingual Data with Self-Supervision for Multilingual Neural Machine Translation
Aditya Siddhant | Ankur Bapna | Yuan Cao | Orhan Firat | Mia Chen | Sneha Kudugunta | Naveen Arivazhagan | Yonghui Wu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Over the last few years two promising research directions in low-resource neural machine translation (NMT) have emerged. The first focuses on utilizing high-resource languages to improve the quality of low-resource languages via multilingual NMT. The second direction employs monolingual data with self-supervision to pre-train translation models, followed by fine-tuning on small amounts of supervised data. In this work, we join these two lines of research and demonstrate the efficacy of monolingual data with self-supervision in multilingual NMT. We offer three major results: (i) Using monolingual data significantly boosts the translation quality of low-resource languages in multilingual models. (ii) Self-supervision improves zero-shot translation quality in multilingual models. (iii) Leveraging monolingual data with self-supervision provides a viable path towards adding new languages to multilingual models, getting up to 33 BLEU on ro-en translation without any parallel data or back-translation.

2019

pdf bib
Neural Decipherment via Minimum-Cost Flow: From Ugaritic to Linear B
Jiaming Luo | Yuan Cao | Regina Barzilay
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this paper we propose a novel neural approach for automatic decipherment of lost languages. To compensate for the lack of strong supervision signal, our model design is informed by patterns in language change documented in historical linguistics. The model utilizes an expressive sequence-to-sequence model to capture character-level correspondences between cognates. To effectively train the model in unsupervised manner, we innovate the training procedure by formalizing it as a minimum-cost flow problem. When applied to decipherment of Ugaritic, we achieve 5% absolute improvement over state-of-the-art results. We also report first automatic results in deciphering Linear B, a syllabic language related to ancient Greek, where our model correctly translates 67.3% of cognates.

2018

pdf bib
Training Deeper Neural Machine Translation Models with Transparent Attention
Ankur Bapna | Mia Chen | Orhan Firat | Yuan Cao | Yonghui Wu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

While current state-of-the-art NMT models, such as RNN seq2seq and Transformers, possess a large number of parameters, they are still shallow in comparison to convolutional models used for both text and vision applications. In this work we attempt to train significantly (2-3x) deeper Transformer and Bi-RNN encoders for machine translation. We propose a simple modification to the attention mechanism that eases the optimization of deeper models, and results in consistent gains of 0.7-1.1 BLEU on the benchmark WMT’14 English-German and WMT’15 Czech-English tasks for both architectures.

2014

pdf bib
Translations of the Callhome Egyptian Arabic corpus for conversational speech translation
Gaurav Kumar | Yuan Cao | Ryan Cotterell | Chris Callison-Burch | Daniel Povey | Sanjeev Khudanpur
Proceedings of the 11th International Workshop on Spoken Language Translation: Papers

Translation of the output of automatic speech recognition (ASR) systems, also known as speech translation, has received a lot of research interest recently. This is especially true for programs such as DARPA BOLT which focus on improving spontaneous human-human conversation across languages. However, this research is hindered by the dearth of datasets developed for this explicit purpose. For Egyptian Arabic-English, in particular, no parallel speechtranscription-translation dataset exists in the same domain. In order to support research in speech translation, we introduce the Callhome Egyptian Arabic-English Speech Translation Corpus. This supplements the existing LDC corpus with four reference translations for each utterance in the transcripts. The result is a three-way parallel dataset of Egyptian Arabic Speech, transcriptions and English translations.

pdf bib
Online Learning in Tensor Space
Yuan Cao | Sanjeev Khudanpur
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

2013

pdf bib
Joshua 5.0: Sparser, Better, Faster, Server
Matt Post | Juri Ganitkevitch | Luke Orland | Jonathan Weese | Yuan Cao | Chris Callison-Burch
Proceedings of the Eighth Workshop on Statistical Machine Translation

2012

pdf bib
Sample Selection for Large-scale MT Discriminative Training
Yuan Cao | Sanjeev Khudanpur
Proceedings of the 10th Conference of the Association for Machine Translation in the Americas: Research Papers

Discriminative training for MT usually involves numerous features and requires large-scale training set to reach reliable parameter estimation. Other than using the expensive human-labeled parallel corpora for training, semi-supervised methods have been proposed to generate huge amount of “hallucinated” data which relieves the data sparsity problem. However the large training set contains both good samples which are suitable for training and bad ones harmful to the training. How to select training samples from vast amount of data can greatly affect the training performance. In this paper we propose a method for selecting samples that are most suitable for discriminative training according to a criterion measuring the dataset quality. Our experimental results show that by adding samples to the training set selectively, we are able to exceed the performance of system trained with the same amount of samples selected randomly.

pdf bib
Review of Hypothesis Alignment Algorithms for MT System Combination via Confusion Network Decoding
Antti-Veikko Rosti | Xiaodong He | Damianos Karakos | Gregor Leusch | Yuan Cao | Markus Freitag | Spyros Matsoukas | Hermann Ney | Jason Smith | Bing Zhang
Proceedings of the Seventh Workshop on Statistical Machine Translation

pdf bib
Joshua 4.0: Packing, PRO, and Paraphrases
Juri Ganitkevitch | Yuan Cao | Jonathan Weese | Matt Post | Chris Callison-Burch
Proceedings of the Seventh Workshop on Statistical Machine Translation

2011

pdf bib
Description of the JHU System Combination Scheme for WMT 2011
Daguang Xu | Yuan Cao | Damianos Karakos
Proceedings of the Sixth Workshop on Statistical Machine Translation