Yuan Tian


2024

pdf bib
A Theory Guided Scaffolding Instruction Framework for LLM-Enabled Metaphor Reasoning
Yuan Tian | Nan Xu | Wenji Mao
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Metaphor detection is a challenging task in figurative language processing, which aims to distinguish between metaphorical and literal expressions in text. Existing methods tackle metaphor detection via training or fine-tuning discriminative models on labeled data. However, these approaches struggle to explain the underlying reasoning process behind the metaphorical/literal judgment. Recently, large language models (LLMs) have shown promise in language reasoning tasks. Although promising, LLM-based methods for metaphor detection and reasoning are still faced with the challenging issue of bringing the explainable concepts for metaphor reasoning and their linguistic manifestation. To fill this gap, we propose a novel Theory guided Scaffolding Instruction (TSI) framework that instructs an LLM to infer the underlying reasoning process of metaphor detection guided by metaphor theories for the first time. Our work is inspired by a pedagogical strategy called scaffolding instruction, which encourages educators to provide questioning and support as scaffolding so as to assist learners in constructing the understanding of pedagogical goals step by step. We first construct a metaphor knowledge graph grounded in metaphor theory which serves as the instructional structure to obtain a series of scaffolding questions, directing the LLM to incrementally generate the reasoning process for metaphor understanding through dialogue interactions. During this theory guided instruction process, we explore the LLM’s mastery boundary and provide the relevant knowledge as scaffolding support when the question is beyond the LLM’s capability. Experimental results verify that our method significantly outperforms both the LLM-based reasoning methods and the SOTA methods in metaphor detection, indicating the facilitation of metaphor and instruction theories in guiding LLM-based reasoning process.

pdf bib
Bridging Word-Pair and Token-Level Metaphor Detection with Explainable Domain Mining
Yuan Tian | Ruike Zhang | Nan Xu | Wenji Mao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Metaphor detection aims to identify whether a linguistic expression in text is metaphorical or literal. Most existing research tackles this problem either using word-pair or token-level information as input, and thus treats word-pair and token-level metaphor detection as distinct subtasks. Benefited from the simplified structure of word pairs, recent methods for word-pair metaphor detection can provide intermediate explainable clues for the detection results, which remains a challenging issue for token-level metaphor detection. To mitigate this issue in token-level metaphor detection and take advantage of word pairs, in this paper, we make the first attempt to bridge word-pair and token-level metaphor detection via modeling word pairs within a sentence as explainable intermediate information. As the central role of verb in metaphorical expressions, we focus on token-level verb metaphor detection and propose a novel explainable Word Pair based Domain Mining (WPDM) method. Our work is inspired by conceptual metaphor theory (CMT). We first devise an approach for conceptual domain mining utilizing semantic role mapping and resources at cognitive, commonsense and lexical levels. We then leverage the inconsistency between source and target domains for core word pair modeling to facilitate the explainability. Experiments on four datasets verify the effectiveness of our method and demonstrate its capability to provide the core word pair and corresponding conceptual domains as explainable clues for metaphor detection.

2023

pdf bib
Target-Oriented Relation Alignment for Cross-Lingual Stance Detection
Ruike Zhang | Nan Xu | Hanxuan Yang | Yuan Tian | Wenji Mao
Findings of the Association for Computational Linguistics: ACL 2023

Stance detection is an important task in text mining and social media analytics, aiming to automatically identify the user’s attitude toward a specific target from text, and has wide applications in a variety of domains. Previous work on stance detection has mainly focused on monolingual setting. To address the problem of imbalanced language resources, cross-lingual stance detection is proposed to transfer the knowledge learned from a high-resource (source) language (typically English) to another low-resource (target) language. However, existing research on cross-lingual stance detection has ignored the inconsistency in the occurrences and distributions of targets between languages, which consequently degrades the performance of stance detection in low-resource languages. In this paper, we first identify the target inconsistency issue in cross-lingual stance detection, and propose a fine-grained Target-oriented Relation Alignment (TaRA) method for the task, which considers both target-level associations and language-level alignments. Specifically, we propose the Target Relation Graph to learn the in-language and cross-language target associations. We further devise the relation alignment strategy to enable knowledge transfer between semantically correlated targets across languages. Experimental results on the representative datasets demonstrate the effectiveness of our method compared to competitive methods under variant settings.

pdf bib
Retrieval Enhanced Data Augmentation for Question Answering on Privacy Policies
Md Rizwan Parvez | Jianfeng Chi | Wasi Uddin Ahmad | Yuan Tian | Kai-Wei Chang
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Prior studies in privacy policies frame the question answering (QA) task as identifying the most relevant text segment or a list of sentences from a policy document given a user query. Existing labeled datasets are heavily imbalanced (only a few relevant segments), limiting the QA performance in this domain. In this paper, we develop a data augmentation framework based on ensembling retriever models that captures the relevant text segments from unlabeled policy documents and expand the positive examples in the training set. In addition, to improve the diversity and quality of the augmented data, we leverage multiple pre-trained language models (LMs) and cascaded them with noise reduction oracles. Using our augmented data on the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1) and achieve a new state-of-the-art F1 score of 50%. Our ablation studies provide further insights into the effectiveness of our approach.

pdf bib
Modeling Conceptual Attribute Likeness and Domain Inconsistency for Metaphor Detection
Yuan Tian | Nan Xu | Wenji Mao | Daniel Zeng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Metaphor detection is an important and challenging task in natural language processing, which aims to distinguish between metaphorical and literal expressions in text. Previous studies mainly leverage the incongruity of source and target domains and contextual clues for detection, neglecting similar attributes shared between source and target concepts in metaphorical expressions. Based on conceptual metaphor theory, these similar attributes are essential to infer implicit meanings conveyed by the metaphor. Under the guidance of conceptual metaphor theory, in this paper, we model the likeness of attribute for the first time and propose a novel Attribute Likeness and Domain Inconsistency Learning framework (AIDIL) for word-pair metaphor detection. Specifically, we propose an attribute siamese network to mine similar attributes between source and target concepts. We then devise a domain contrastive learning strategy to learn the semantic inconsistency of concepts in source and target domains. Extensive experiments on four datasets verify that our method significantly outperforms the previous state-of-the-art methods, and demonstrate the generalization ability of our method.

pdf bib
Interactive Text-to-SQL Generation via Editable Step-by-Step Explanations
Yuan Tian | Zheng Zhang | Zheng Ning | Toby Li | Jonathan K. Kummerfeld | Tianyi Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Relational databases play an important role in business, science, and more. However, many users cannot fully unleash the analytical power of relational databases, because they are not familiar with database languages such as SQL. Many techniques have been proposed to automatically generate SQL from natural language, but they suffer from two issues: (1) they still make many mistakes, particularly for complex queries, and (2) they do not provide a flexible way for non-expert users to validate and refine incorrect queries. To address these issues, we introduce a new interaction mechanism that allows users to directly edit a step-by-step explanation of a query to fix errors. Our experiments on multiple datasets, as well as a user study with 24 participants, demonstrate that our approach can achieve better performance than multiple SOTA approaches. Our code and datasets are available at https://github.com/magic-YuanTian/STEPS.

pdf bib
Dynamic Routing Transformer Network for Multimodal Sarcasm Detection
Yuan Tian | Nan Xu | Ruike Zhang | Wenji Mao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal sarcasm detection is an important research topic in natural language processing and multimedia computing, and benefits a wide range of applications in multiple domains. Most existing studies regard the incongruity between image and text as the indicative clue in identifying multimodal sarcasm. To capture cross-modal incongruity, previous methods rely on fixed architectures in network design, which restricts the model from dynamically adjusting to diverse image-text pairs. Inspired by routing-based dynamic network, we model the dynamic mechanism in multimodal sarcasm detection and propose the Dynamic Routing Transformer Network (DynRT-Net). Our method utilizes dynamic paths to activate different routing transformer modules with hierarchical co-attention adapting to cross-modal incongruity. Experimental results on a public dataset demonstrate the effectiveness of our method compared to the state-of-the-art methods. Our codes are available at https://github.com/TIAN-viola/DynRT.

pdf bib
Towards Better Entity Linking with Multi-View Enhanced Distillation
Yi Liu | Yuan Tian | Jianxun Lian | Xinlong Wang | Yanan Cao | Fang Fang | Wen Zhang | Haizhen Huang | Weiwei Deng | Qi Zhang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Dense retrieval is widely used for entity linking to retrieve entities from large-scale knowledge bases. Mainstream techniques are based on a dual-encoder framework, which encodes mentions and entities independently and calculates their relevances via rough interaction metrics, resulting in difficulty in explicitly modeling multiple mention-relevant parts within entities to match divergent mentions. Aiming at learning entity representations that can match divergent mentions, this paper proposes a Multi-View Enhanced Distillation (MVD) framework, which can effectively transfer knowledge of multiple fine-grained and mention-relevant parts within entities from cross-encoders to dual-encoders. Each entity is split into multiple views to avoid irrelevant information being over-squashed into the mention-relevant view. We further design cross-alignment and self-alignment mechanisms for this framework to facilitate fine-grained knowledge distillation from the teacher model to the student model. Meanwhile, we reserve a global-view that embeds the entity as a whole to prevent dispersal of uniform information. Experiments show our method achieves state-of-the-art performance on several entity linking benchmarks.

pdf bib
PLUE: Language Understanding Evaluation Benchmark for Privacy Policies in English
Jianfeng Chi | Wasi Uddin Ahmad | Yuan Tian | Kai-Wei Chang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Privacy policies provide individuals with information about their rights and how their personal information is handled. Natural language understanding (NLU) technologies can support individuals and practitioners to understand better privacy practices described in lengthy and complex documents. However, existing efforts that use NLU technologies are limited by processing the language in a way exclusive to a single task focusing on certain privacy practices. To this end, we introduce the Privacy Policy Language Understanding Evaluation (PLUE) benchmark, a multi-task benchmark for evaluating the privacy policy language understanding across various tasks. We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training. We evaluate several generic pre-trained language models and continue pre-training them on the collected corpus. We demonstrate that domain-specific continual pre-training offers performance improvements across all tasks. The code and models are released at https://github.com/JFChi/PLUE.

2022

pdf bib
Towards Unified Representations of Knowledge Graph and Expert Rules for Machine Learning and Reasoning
Zhepei Wei | Yue Wang | Jinnan Li | Zhining Liu | Erxin Yu | Yuan Tian | Xin Wang | Yi Chang
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

With a knowledge graph and a set of if-then rules, can we reason about the conclusions given a set of observations? In this work, we formalize this question as the cognitive inference problem, and introduce the Cognitive Knowledge Graph (CogKG) that unifies two representations of heterogeneous symbolic knowledge: expert rules and relational facts. We propose a general framework in which the unified knowledge representations can perform both learning and reasoning. Specifically, we implement the above framework in two settings, depending on the availability of labeled data. When no labeled data are available for training, the framework can directly utilize symbolic knowledge as the decision basis and perform reasoning. When labeled data become available, the framework casts symbolic knowledge as a trainable neural architecture and optimizes the connection weights among neurons through gradient descent. Empirical study on two clinical diagnosis benchmarks demonstrates the superiority of the proposed method over time-tested knowledge-driven and data-driven methods, showing the great potential of the proposed method in unifying heterogeneous symbolic knowledge, i.e., expert rules and relational facts, as the substrate of machine learning and reasoning models.

pdf bib
FastClass: A Time-Efficient Approach to Weakly-Supervised Text Classification
Tingyu Xia | Yue Wang | Yuan Tian | Yi Chang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Weakly-supervised text classification aims to train a classifier using only class descriptions and unlabeled data. Recent research shows that keyword-driven methods can achieve state-of-the-art performance on various tasks. However, these methods not only rely on carefully-crafted class descriptions to obtain class-specific keywords but also require substantial amount of unlabeled data and takes a long time to train. This paper proposes FastClass, an efficient weakly-supervised classification approach. It uses dense text representation to retrieve class-relevant documents from external unlabeled corpus and selects an optimal subset to train a classifier. Compared to keyword-driven methods, our approach is less reliant on initial class descriptions as it no longer needs to expand each class description into a set of class-specific keywords.Experiments on a wide range of classification tasks show that the proposed approach frequently outperforms keyword-driven models in terms of classification accuracy and often enjoys orders-of-magnitude faster training speed.

pdf bib
Conditional Supervised Contrastive Learning for Fair Text Classification
Jianfeng Chi | William Shand | Yaodong Yu | Kai-Wei Chang | Han Zhao | Yuan Tian
Findings of the Association for Computational Linguistics: EMNLP 2022

Contrastive representation learning has gained much attention due to its superior performance in learning representations from both image and sequential data. However, the learned representations could potentially lead to performance disparities in downstream tasks, such as increased silencing of underrepresented groups in toxicity comment classification. In light of this challenge, in this work, we study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning. Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives, and then propose to use conditional supervised contrastive objectives to learn fair representations for text classification. We conduct experiments on two text datasets to demonstrate the effectiveness of our approaches in balancing the trade-offs between task performance and bias mitigation among existing baselines for text classification. Furthermore, we also show that the proposed methods are stable in different hyperparameter settings.

2021

pdf bib
Intent Classification and Slot Filling for Privacy Policies
Wasi Ahmad | Jianfeng Chi | Tu Le | Thomas Norton | Yuan Tian | Kai-Wei Chang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Understanding privacy policies is crucial for users as it empowers them to learn about the information that matters to them. Sentences written in a privacy policy document explain privacy practices, and the constituent text spans convey further specific information about that practice. We refer to predicting the privacy practice explained in a sentence as intent classification and identifying the text spans sharing specific information as slot filling. In this work, we propose PolicyIE, an English corpus consisting of 5,250 intent and 11,788 slot annotations spanning 31 privacy policies of websites and mobile applications. PolicyIE corpus is a challenging real-world benchmark with limited labeled examples reflecting the cost of collecting large-scale annotations from domain experts. We present two alternative neural approaches as baselines, (1) intent classification and slot filling as a joint sequence tagging and (2) modeling them as a sequence-to-sequence (Seq2Seq) learning task. The experiment results show that both approaches perform comparably in intent classification, while the Seq2Seq method outperforms the sequence tagging approach in slot filling by a large margin. We perform a detailed error analysis to reveal the challenges of the proposed corpus.

2020

pdf bib
PolicyQA: A Reading Comprehension Dataset for Privacy Policies
Wasi Ahmad | Jianfeng Chi | Yuan Tian | Kai-Wei Chang
Findings of the Association for Computational Linguistics: EMNLP 2020

Privacy policy documents are long and verbose. A question answering (QA) system can assist users in finding the information that is relevant and important to them. Prior studies in this domain frame the QA task as retrieving the most relevant text segment or a list of sentences from the policy document given a question. On the contrary, we argue that providing users with a short text span from policy documents reduces the burden of searching the target information from a lengthy text segment. In this paper, we present PolicyQA, a dataset that contains 25,017 reading comprehension style examples curated from an existing corpus of 115 website privacy policies. PolicyQA provides 714 human-annotated questions written for a wide range of privacy practices. We evaluate two existing neural QA models and perform rigorous analysis to reveal the advantages and challenges offered by PolicyQA.

pdf bib
ToHRE: A Top-Down Classification Strategy with Hierarchical Bag Representation for Distantly Supervised Relation Extraction
Erxin Yu | Wenjuan Han | Yuan Tian | Yi Chang
Proceedings of the 28th International Conference on Computational Linguistics

Distantly Supervised Relation Extraction (DSRE) has proven to be effective to find relational facts from texts, but it still suffers from two main problems: the wrong labeling problem and the long-tail problem. Most of the existing approaches address these two problems through flat classification, which lacks hierarchical information of relations. To leverage the informative relation hierarchies, we formulate DSRE as a hierarchical classification task and propose a novel hierarchical classification framework, which extracts the relation in a top-down manner. Specifically, in our proposed framework, 1) we use a hierarchically-refined representation method to achieve hierarchy-specific representation; 2) a top-down classification strategy is introduced instead of training a set of local classifiers. The experiments on NYT dataset demonstrate that our approach significantly outperforms other state-of-the-art approaches, especially for the long-tail problem.

pdf bib
A Novel Cascade Binary Tagging Framework for Relational Triple Extraction
Zhepei Wei | Jianlin Su | Yue Wang | Yuan Tian | Yi Chang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Extracting relational triples from unstructured text is crucial for large-scale knowledge graph construction. However, few existing works excel in solving the overlapping triple problem where multiple relational triples in the same sentence share the same entities. In this work, we introduce a fresh perspective to revisit the relational triple extraction task and propose a novel cascade binary tagging framework (CasRel) derived from a principled problem formulation. Instead of treating relations as discrete labels as in previous works, our new framework models relations as functions that map subjects to objects in a sentence, which naturally handles the overlapping problem. Experiments show that the CasRel framework already outperforms state-of-the-art methods even when its encoder module uses a randomly initialized BERT encoder, showing the power of the new tagging framework. It enjoys further performance boost when employing a pre-trained BERT encoder, outperforming the strongest baseline by 17.5 and 30.2 absolute gain in F1-score on two public datasets NYT and WebNLG, respectively. In-depth analysis on different scenarios of overlapping triples shows that the method delivers consistent performance gain across all these scenarios. The source code and data are released online.