2024
pdf
bib
abs
MEDs for PETs: Multilingual Euphemism Disambiguation for Potentially Euphemistic Terms
Patrick Lee
|
Alain Chirino Trujillo
|
Diana Cuevas Plancarte
|
Olumide Ojo
|
Xinyi Liu
|
Iyanuoluwa Shode
|
Yuan Zhao
|
Anna Feldman
|
Jing Peng
Findings of the Association for Computational Linguistics: EACL 2024
Euphemisms are found across the world’s languages, making them a universal linguistic phenomenon. As such, euphemistic data may have useful properties for computational tasks across languages. In this study, we explore this premise by training a multilingual transformer model (XLM-RoBERTa) to disambiguate potentially euphemistic terms (PETs) in multilingual and cross-lingual settings. In line with current trends, we demonstrate that zero-shot learning across languages takes place. We also show cases where multilingual models perform better on the task compared to monolingual models by a statistically significant margin, indicating that multilingual data presents additional opportunities for models to learn about cross-lingual, computational properties of euphemisms. In a follow-up analysis, we focus on universal euphemistic “categories” such as death and bodily functions among others. We test to see whether cross-lingual data of the same domain is more important than within-language data of other domains to further understand the nature of the cross-lingual transfer.
pdf
bib
abs
Layer-wise Importance Matters: Less Memory for Better Performance in Parameter-efficient Fine-tuning of Large Language Models
Kai Yao
|
Penglei Gao
|
Lichun Li
|
Yuan Zhao
|
Xiaofeng Wang
|
Wei Wang
|
Jianke Zhu
Findings of the Association for Computational Linguistics: EMNLP 2024
Parameter-Efficient Fine-Tuning (PEFT) methods have gained significant popularity for adapting pre-trained Large Language Models (LLMs) to downstream tasks, primarily due to their potential to significantly reduce memory and computational overheads. However, a common limitation in most PEFT approaches is their application of a uniform architectural design across all layers. This uniformity involves identical trainable modules and ignores the varying importance of each layer, leading to sub-optimal fine-tuning results. To overcome the above limitation and obtain better performance, we develop a novel approach, Importance-aware Sparse Tuning (IST), to fully utilize the inherent sparsity and select the most important subset of full layers with effective layer-wise importance scoring. The proposed IST is a versatile and plug-and-play technique compatible with various PEFT methods that operate on a per-layer basis. By leveraging the estimated importance scores, IST dynamically updates these selected layers in PEFT modules, leading to reduced memory demands. We further provide theoretical proof of convergence and empirical evidence of superior performance to demonstrate the advantages of IST over uniform updating strategies. Extensive experiments on a range of LLMs, PEFTs, and downstream tasks substantiate the effectiveness of our proposed method, showcasing IST’s capacity to enhance existing layer-based PEFT methods. Our code is available at https://github.com/Kaiseem/IST
pdf
bib
abs
Utilizing an Ensemble Model with Anomalous Label Smoothing to Detect Generated Scientific Papers
Yuan Zhao
|
Junruo Gao
|
Junlin Wang
|
Gang Luo
|
Liang Tang
Proceedings of the Fourth Workshop on Scholarly Document Processing (SDP 2024)
Generative AI, as it becomes increasingly integrated into our lives, has brought convenience, though some concerns have arisen regarding its potential impact on the rigor and authenticity of scientific research. To encourage the development of robust and reliable automatically-generated scientific text detection systems, the “DAGPap24: Detecting Automatically Generated Scientific Papers” competition was held and shared the same task with the 4th Workshop on Scholarly Document Processing (SDP 2024) to be held at ACL 2024. In the DAGPap24 competition, participants were tasked with constructing a generative text detection model that could accurately distinguish between the human written fragment, the synonym replacement fragment, the ChatGPT rewrite fragment, and the generated summary fragment of a paper. In this competition, we first conducted a comprehensive analysis of the training set to build a generative paper detection model. Then we tried various language models, including SciBERT, ALBERT, DeBERTa, RoBERTa, etc. After that, we introduced an Anomalous Label Smoothing (ALS) method and a majority voting method to improve the final results. Finally, we achieved 0.9948 and 0.9944 F1 scores during the development and testing phases respectively, and we achieved second place in the competition.
pdf
bib
abs
Enhancing Cross-Lingual Emotion Detection with Data Augmentation and Token-Label Mapping
Jinghui Zhang
|
Yuan Zhao
|
Siqin Zhang
|
Ruijing Zhao
|
Siyu Bao
Proceedings of the 14th Workshop on Computational Approaches to Subjectivity, Sentiment, & Social Media Analysis
Cross-lingual emotion detection faces challenges such as imbalanced label distribution, data scarcity, cultural and linguistic differences, figurative language, and the opaqueness of pre-trained language models. This paper presents our approach to the EXALT shared task at WASSA 2024, focusing on emotion transferability across languages and trigger word identification. We employ data augmentation techniques, including back-translation and synonym replacement, to address data scarcity and imbalance issues in the emotion detection sub-task. For the emotion trigger identification sub-task, we utilize token and label mapping to capture emotional information at the subword level. Our system achieves competitive performance, ranking 13th, 1st, and 2nd in the Emotion Detection, Binary Trigger Word Detection, and Numerical Trigger Word Detection tasks.
2023
pdf
bib
abs
FEED PETs: Further Experimentation and Expansion on the Disambiguation of Potentially Euphemistic Terms
Patrick Lee
|
Iyanuoluwa Shode
|
Alain Trujillo
|
Yuan Zhao
|
Olumide Ojo
|
Diana Plancarte
|
Anna Feldman
|
Jing Peng
Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)
Transformers have been shown to work well for the task of English euphemism disambiguation, in which a potentially euphemistic term (PET) is classified as euphemistic or non-euphemistic in a particular context. In this study, we expand on the task in two ways. First, we annotate PETs for vagueness, a linguistic property associated with euphemisms, and find that transformers are generally better at classifying vague PETs, suggesting linguistic differences in the data that impact performance. Second, we present novel euphemism corpora in three different languages: Yoruba, Spanish, and Mandarin Chinese. We perform euphemism disambiguation experiments in each language using multilingual transformer models mBERT and XLM-RoBERTa, establishing preliminary results from which to launch future work.