Yuan Zong


2021

pdf bib
基于双编码器的医学文本中文分词(Chinese word segmentation of medical text based on dual-encoder)
Yuan Zong (宗源) | Baobao Chang (常宝宝)
Proceedings of the 20th Chinese National Conference on Computational Linguistics

中文分词是自然语言处理领域的基础工作,然而前人的医学文本分词工作都只是直接套用通用分词的方法,而医学文本多专用术语的特点让分词系统需要对医学专用术语和医学文本中的非医学术语文本提供不同的分词粒度。本文提出了双编码器医学文本中文分词模型,利用辅助编码器为医学专有术语提供粗粒度表示。模型将需要粗粒度分词的医学专用术语和需要通用分词粒度的文本分开,在提升医学专用术语的分词能力的同时最大限度地避免了其粗粒度对于医学文本中通用文本分词的干扰。

2020

pdf bib
面向医学文本处理的医学实体标注规范(Medical Entity Annotation Standard for Medical Text Processing)
Huan Zhang (张欢) | Yuan Zong (宗源) | Baobao Chang (常宝宝) | Zhifang Sui (穗志方) | Hongying Zan (昝红英) | Kunli Zhang (张坤丽)
Proceedings of the 19th Chinese National Conference on Computational Linguistics

随着智慧医疗的普及,利用自然语言处理技术识别医学信息的需求日益增长。目前,针对医学实体而言,医学共享语料库仍处于空白状态,这对医学文本信息处理各项任务的进展造成了巨大阻力。如何判断不同的医学实体类别?如何界定不同实体间的涵盖范围?这些问题导致缺乏类似通用场景的大规模规范标注的医学文本数据。针对上述问题,该文参考了UMLS中定义的语义类型,提出面向医学文本信息处理的医学实体标注规范,涵盖了疾病、临床表现、医疗程序、医疗设备等9种医学实体,以及基于规范构建医学实体标注语料库。该文综述了标注规范的描述体系、分类原则、混淆处理、语料标注过程以及医学实体自动标注基线实验等相关问题,希望能为医学实体语料库的构建提供可参考的标注规范,以及为医学实体识别提供语料支持。