Yuanhang Ren


pdf bib
Hence, Socrates is mortal: A Benchmark for Natural Language Syllogistic Reasoning
Yongkang Wu | Meng Han | Yutao Zhu | Lei Li | Xinyu Zhang | Ruofei Lai | Xiaoguang Li | Yuanhang Ren | Zhicheng Dou | Zhao Cao
Findings of the Association for Computational Linguistics: ACL 2023

Syllogistic reasoning, a typical form of deductive reasoning, is a critical capability widely required in natural language understanding tasks, such as text entailment and question answering. To better facilitate research on syllogistic reasoning, we develop a benchmark called SylloBase that differs from existing syllogistic datasets in three aspects: (1) Covering a complete taxonomy of syllogism reasoning patterns; (2) Containing both automatically and manually constructed samples; and (3) Involving both the generation and understanding tasks. We automatically construct 50k template-based syllogism samples by mining syllogism patterns from Wikidata and ConceptNet. To improve our dataset’s naturalness and challenge, we apply GPT-3 to paraphrase the template-based data and further manually rewrite 1,000 samples as the test set. State-of-the-art pre-trained language models can achieve the best generation ROUGE-L of 38.72 by T5 and the best multi-choice accuracy of 72.77% by RoBERTa on SylloBase, which indicates the great challenge of learning diverse syllogistic reasoning types on SylloBase. Our datasets are released at https://github.com/casually-PYlearner/SYLLOBASE.

pdf bib
IAG: Induction-Augmented Generation Framework for Answering Reasoning Questions
Zhebin Zhang | Xinyu Zhang | Yuanhang Ren | Saijiang Shi | Meng Han | Yongkang Wu | Ruofei Lai | Zhao Cao
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Retrieval-Augmented Generation (RAG), by incorporating external knowledge with parametric memory of language models, has become the state-of-the-art architecture for open-domain QA tasks. However, common knowledge bases are inherently constrained by limited coverage and noisy information, making retrieval-based approaches inadequate to answer implicit reasoning questions. In this paper, we propose an Induction-Augmented Generation (IAG) framework that utilizes inductive knowledge along with the retrieved documents for implicit reasoning. We leverage large language models (LLMs) for deriving such knowledge via a novel prompting method based on inductive reasoning patterns. On top of this, we implement two versions of IAG named IAG-GPT and IAG-Student, respectively. IAG-GPT directly utilizes the knowledge generated by GPT-3 for answer prediction, while IAG-Student gets rid of dependencies on GPT service at inference time by incorporating a student inductor model. The inductor is firstly trained via knowledge distillation and further optimized by back-propagating the generator feedback via differentiable beam scores. Experimental results show that IAG outperforms RAG baselines as well as ChatGPT on two Open-Domain QA tasks. Notably, our best models have won the first place in the official leaderboards of CSQA2.0 (since Nov 1, 2022) and StrategyQA (since Jan 8, 2023).


pdf bib
Specializing Word Vectors by Spectral Decomposition on Heterogeneously Twisted Graphs
Yuanhang Ren | Ye Du
Proceedings of the 28th International Conference on Computational Linguistics

Traditional word vectors, such as word2vec and glove, have a well-known inclination to conflate the semantic similarity with other semantic relations. A retrofitting procedure may be needed to solve this issue. In this work, we propose a new retrofitting method called Heterogeneously Retrofitted Spectral Word Embedding. It heterogeneously twists the similarity matrix of word pairs with lexical constraints. A new set of word vectors is generated by a spectral decomposition of the similarity matrix, which has a linear algebraic analytic form. Our method has a competitive performance compared with the state-of-the-art retrofitting method such as AR (CITATION). In addition, since our embedding has a clear linear algebraic relationship with the similarity matrix, we carefully study the contribution of each component in our model. Last but not least, our method is very efficient to execute.


pdf bib
Tackling Adversarial Examples in QA via Answer Sentence Selection
Yuanhang Ren | Ye Du | Di Wang
Proceedings of the Workshop on Machine Reading for Question Answering

Question answering systems deteriorate dramatically in the presence of adversarial sentences in articles. According to Jia and Liang (2017), the single BiDAF system (Seo et al., 2016) only achieves an F1 score of 4.8 on the ADDANY adversarial dataset. In this paper, we present a method to tackle this problem via answer sentence selection. Given a paragraph of an article and a corresponding query, instead of directly feeding the whole paragraph to the single BiDAF system, a sentence that most likely contains the answer to the query is first selected, which is done via a deep neural network based on TreeLSTM (Tai et al., 2015). Experiments on ADDANY adversarial dataset validate the effectiveness of our method. The F1 score has been improved to 52.3.