Yuanxin Xiang
2025
GraphOTTER: Evolving LLM-based Graph Reasoning for Complex Table Question Answering
Qianlong Li
|
Chen Huang
|
Shuai Li
|
Yuanxin Xiang
|
Deng Xiong
|
Wenqiang Lei
Proceedings of the 31st International Conference on Computational Linguistics
Complex Table Question Answering involves providing accurate answers to specific questions based on intricate tables that exhibit complex layouts and flexible header locations. Despite considerable progress having been made in the LLM era, the reasoning processes of existing methods are often implicit, feeding the entire table into prompts, making it difficult to effectively filter out irrelevant information in the table. To this end, we propose GraphOTTER that explicitly establishes the reasoning process to pinpoint the correct answers. In particular, GraphOTTER leverages a graph-based representation, transforming the complex table into an undirected graph. It then conducts step-by-step reasoning on the graph, with each step guided by a set of pre-defined intermediate reasoning actions. As such, it constructs a clear reasoning path and effectively identifies the answer to a given question. Comprehensive experiments on two benchmark datasets and two LLM backbones demonstrate the effectiveness of GraphOTTER. Further analysis indicates that its success may be attributed to the ability to efficiently filter out irrelevant information, thereby focusing the reasoning process on the most pertinent data. Our code and experimental datasets are available at https://github.com/JDing0521/GraphOTTER.
2019
Revisit Automatic Error Detection for Wrong and Missing Translation – A Supervised Approach
Wenqiang Lei
|
Weiwen Xu
|
Ai Ti Aw
|
Yuanxin Xiang
|
Tat Seng Chua
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
While achieving great fluency, current machine translation (MT) techniques are bottle-necked by adequacy issues. To have a closer study of these issues and accelerate model development, we propose automatic detecting adequacy errors in MT hypothesis for MT model evaluation. To do that, we annotate missing and wrong translations, the two most prevalent issues for current neural machine translation model, in 15000 Chinese-English translation pairs. We build a supervised alignment model for translation error detection (AlignDet) based on a simple Alignment Triangle strategy to set the benchmark for automatic error detection task. We also discuss the difficulties of this task and the benefits of this task for existing evaluation metrics.