2024
pdf
bib
abs
Overcoming Catastrophic Forgetting by Exemplar Selection in Task-oriented Dialogue System
Chen Chen
|
Ruizhe Li
|
Yuchen Hu
|
Yuanyuan Chen
|
Chengwei Qin
|
Qiang Zhang
Findings of the Association for Computational Linguistics ACL 2024
Intelligent task-oriented dialogue systems (ToDs) are expected to continuously acquire new knowledge, also known as Continual Learning (CL), which is crucial to fit ever-changing user needs. However, catastrophic forgetting dramatically degrades the model performance in face of a long streamed curriculum. In this paper, we aim to overcome the forgetting problem in ToDs and propose a method (HESIT) with hyper-gradient-based exemplar strategy, which samples influential exemplars for periodic retraining. Instead of unilaterally observing data or models, HESIT adopts a profound exemplar selection strategy that considers the general performance of the trained model when selecting exemplars for each task domain. Specifically, HESIT analyzes the training data influence by tracing their hyper-gradient in the optimization process. Furthermore, HESIT avoids estimating Hessian to make it compatible for ToDs with a large pre-trained model. Experimental results show that HESIT effectively alleviates catastrophic forgetting by exemplar selection, and achieves state-of-the-art performance on the largest CL benchmark of ToDs in terms of all metrics.
pdf
bib
abs
Listen Again and Choose the Right Answer: A New Paradigm for Automatic Speech Recognition with Large Language Models
Yuchen Hu
|
Chen Chen
|
Chengwei Qin
|
Qiushi Zhu
|
EngSiong Chng
|
Ruizhe Li
Findings of the Association for Computational Linguistics ACL 2024
Recent advances in large language models (LLMs) have promoted generative error correction (GER) for automatic speech recognition (ASR), which aims to predict the ground-truth transcription from the decoded N-best hypotheses. Thanks to the strong language generation ability of LLMs and rich information in the N-best list, GER shows great effectiveness in enhancing ASR results. However, it still suffers from two limitations: 1) LLMs are unaware of the source speech during GER, which may lead to results that are grammatically correct but violate the source speech content, 2) N-best hypotheses usually only vary in a few tokens, making it redundant to send all of them for GER, which could confuse LLM about which tokens to focus on and thus lead to increased miscorrection. In this paper, we propose ClozeGER, a new paradigm for ASR generative error correction. First, we introduce a multimodal LLM (i.e., SpeechGPT) to receive source speech as extra input to improve the fidelity of correction output. Then, we reformat GER as a cloze test with logits calibration to remove the input information redundancy and simplify GER with clear instructions. Experiments show that ClozeGER achieves a new breakthrough over vanilla GER on 9 popular ASR datasets.
pdf
bib
abs
GenTranslate: Large Language Models are Generative Multilingual Speech and Machine Translators
Yuchen Hu
|
Chen Chen
|
Chao-Han Yang
|
Ruizhe Li
|
Dong Zhang
|
Zhehuai Chen
|
EngSiong Chng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advances in large language models (LLMs) have stepped forward the development of multilingual speech and machine translation by its reduced representation errors and incorporated external knowledge. However, both translation tasks typically utilize beam search decoding and top-1 hypothesis selection for inference. These techniques struggle to fully exploit the rich information in the diverse N-best hypotheses, making them less optimal for translation tasks that require a single, high-quality output sequence. In this paper, we propose a new generative paradigm for translation tasks, namely GenTranslate, which builds upon LLMs to generate better results from the diverse translation versions in N-best list. Leveraging the rich linguistic knowledge and strong reasoning abilities of LLMs, our new paradigm can integrate the diverse N-best candidates to generate a higher-quality translation result. Furthermore, to support LLM finetuning, we build and release a HypoTranslate dataset that contains over 592K hypotheses-translation pairs in 11 languages. Experiments on various speech and machine translation benchmarks (e.g., FLEURS, CoVoST-2, WMT) demonstrate that our GenTranslate significantly outperforms the state-of-the-art model.
2023
pdf
bib
abs
MIR-GAN: Refining Frame-Level Modality-Invariant Representations with Adversarial Network for Audio-Visual Speech Recognition
Yuchen Hu
|
Chen Chen
|
Ruizhe Li
|
Heqing Zou
|
Eng Siong Chng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Audio-visual speech recognition (AVSR) attracts a surge of research interest recently by leveraging multimodal signals to understand human speech. Mainstream approaches addressing this task have developed sophisticated architectures and techniques for multi-modality fusion and representation learning. However, the natural heterogeneity of different modalities causes distribution gap between their representations, making it challenging to fuse them. In this paper, we aim to learn the shared representations across modalities to bridge their gap. Different from existing similar methods on other multimodal tasks like sentiment analysis, we focus on the temporal contextual dependencies considering the sequence-to-sequence task setting of AVSR. In particular, we propose an adversarial network to refine frame-level modality-invariant representations (MIR-GAN), which captures the commonality across modalities to ease the subsequent multimodal fusion process. Extensive experiments on public benchmarks LRS3 and LRS2 show that our approach outperforms the state-of-the-arts.
pdf
bib
abs
Hearing Lips in Noise: Universal Viseme-Phoneme Mapping and Transfer for Robust Audio-Visual Speech Recognition
Yuchen Hu
|
Ruizhe Li
|
Chen Chen
|
Chengwei Qin
|
Qiu-Shi Zhu
|
Eng Siong Chng
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Audio-visual speech recognition (AVSR) provides a promising solution to ameliorate the noise-robustness of audio-only speech recognition with visual information. However, most existing efforts still focus on audio modality to improve robustness considering its dominance in AVSR task, with noise adaptation techniques such as front-end denoise processing. Though effective, these methods are usually faced with two practical challenges: 1) lack of sufficient labeled noisy audio-visual training data in some real-world scenarios and 2) less optimal model generality to unseen testing noises. In this work, we investigate the noise-invariant visual modality to strengthen robustness of AVSR, which can adapt to any testing noises while without dependence on noisy training data, a.k.a., unsupervised noise adaptation. Inspired by human perception mechanism, we propose a universal viseme-phoneme mapping (UniVPM) approach to implement modality transfer, which can restore clean audio from visual signals to enable speech recognition under any noisy conditions. Extensive experiments on public benchmarks LRS3 and LRS2 show that our approach achieves the state-of-the-art under various noisy as well as clean conditions. In addition, we also outperform previous state-of-the-arts on visual speech recognition task.
pdf
bib
abs
UniS-MMC: Multimodal Classification via Unimodality-supervised Multimodal Contrastive Learning
Heqing Zou
|
Meng Shen
|
Chen Chen
|
Yuchen Hu
|
Deepu Rajan
|
Eng Siong Chng
Findings of the Association for Computational Linguistics: ACL 2023
Multimodal learning aims to imitate human beings to acquire complementary information from multiple modalities for various downstream tasks. However, traditional aggregation-based multimodal fusion methods ignore the inter-modality relationship, treat each modality equally, suffer sensor noise, and thus reduce multimodal learning performance. In this work, we propose a novel multimodal contrastive method to explore more reliable multimodal representations under the weak supervision of unimodal predicting. Specifically, we first capture task-related unimodal representations and the unimodal predictions from the introduced unimodal predicting task. Then the unimodal representations are aligned with the more effective one by the designed multimodal contrastive method under the supervision of the unimodal predictions. Experimental results with fused features on two image-text classification benchmarks UPMC-Food-101 and N24News show that our proposed Unimodality-Supervised MultiModal Contrastive UniS-MMC learning method outperforms current state-of-the-art multimodal methods. The detailed ablation study and analysis further demonstrate the advantage of our proposed method.
2021
pdf
bib
abs
The USTC-NELSLIP Systems for Simultaneous Speech Translation Task at IWSLT 2021
Dan Liu
|
Mengge Du
|
Xiaoxi Li
|
Yuchen Hu
|
Lirong Dai
Proceedings of the 18th International Conference on Spoken Language Translation (IWSLT 2021)
This paper describes USTC-NELSLIP’s submissions to the IWSLT2021 Simultaneous Speech Translation task. We proposed a novel simultaneous translation model, Cross-Attention Augmented Transducer (CAAT), which extends conventional RNN-T to sequence-to-sequence tasks without monotonic constraints, e.g., simultaneous translation. Experiments on speech-to-text (S2T) and text-to-text (T2T) simultaneous translation tasks shows CAAT achieves better quality-latency trade-offs compared to wait-k, one of the previous state-of-the-art approaches. Based on CAAT architecture and data augmentation, we build S2T and T2T simultaneous translation systems in this evaluation campaign. Compared to last year’s optimal systems, our S2T simultaneous translation system improves by an average of 11.3 BLEU for all latency regimes, and our T2T simultaneous translation system improves by an average of 4.6 BLEU.