Yue Li


pdf bib
GateNLP-UShef at SemEval-2022 Task 8: Entity-Enriched Siamese Transformer for Multilingual News Article Similarity
Iknoor Singh | Yue Li | Melissa Thong | Carolina Scarton
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper describes the second-placed system on the leaderboard of SemEval-2022 Task 8: Multilingual News Article Similarity. We propose an entity-enriched Siamese Transformer which computes news article similarity based on different sub-dimensions, such as the shared narrative, entities, location and time of the event discussed in the news article. Our system exploits a Siamese network architecture using a Transformer encoder to learn document-level representations for the purpose of capturing the narrative together with the auxiliary entity-based features extracted from the news articles. The intuition behind using all these features together is to capture the similarity between news articles at different granularity levels and to assess the extent to which different news outlets write about “the same events”. Our experimental results and detailed ablation study demonstrate the effectiveness and the validity of our proposed method.


pdf bib
Semi-supervised Meta-learning for Cross-domain Few-shot Intent Classification
Yue Li | Jiong Zhang
Proceedings of the 1st Workshop on Meta Learning and Its Applications to Natural Language Processing

Meta learning aims to optimize the model’s capability to generalize to new tasks and domains. Lacking a data-efficient way to create meta training tasks has prevented the application of meta-learning to the real-world few shot learning scenarios. Recent studies have proposed unsupervised approaches to create meta-training tasks from unlabeled data for free, e.g., the SMLMT method (Bansal et al., 2020a) constructs unsupervised multi-class classification tasks from the unlabeled text by randomly masking words in the sentence and let the meta learner choose which word to fill in the blank. This study proposes a semi-supervised meta-learning approach that incorporates both the representation power of large pre-trained language models and the generalization capability of prototypical networks enhanced by SMLMT. The semi-supervised meta training approach avoids overfitting prototypical networks on a small number of labeled training examples and quickly learns cross-domain task-specific representation only from a few supporting examples. By incorporating SMLMT with prototypical networks, the meta learner generalizes better to unseen domains and gains higher accuracy on out-of-scope examples without the heavy lifting of pre-training. We observe significant improvement in few-shot generalization after training only a few epochs on the intent classification tasks evaluated in a multi-domain setting.


pdf bib
Revisiting Rumour Stance Classification: Dealing with Imbalanced Data
Yue Li | Carolina Scarton
Proceedings of the 3rd International Workshop on Rumours and Deception in Social Media (RDSM)

Correctly classifying stances of replies can be significantly helpful for the automatic detection and classification of online rumours. One major challenge is that there are considerably more non-relevant replies (comments) than informative ones (supports and denies), making the task highly imbalanced. In this paper we revisit the task of rumour stance classification, aiming to improve the performance over the informative minority classes. We experiment with traditional methods for imbalanced data treatment with feature- and BERT-based classifiers. Our models outperform all systems in RumourEval 2017 shared task and rank second in RumourEval 2019.


pdf bib
Information Extraction of Multiple Categories from Pathology Reports
Yue Li | David Martinez
Proceedings of the Australasian Language Technology Association Workshop 2010