Yueqi Xie


2024

pdf bib
MLLM-Protector: Ensuring MLLM’s Safety without Hurting Performance
Renjie Pi | Tianyang Han | Jianshu Zhang | Yueqi Xie | Rui Pan | Qing Lian | Hanze Dong | Jipeng Zhang | Tong Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The deployment of multimodal large language models (MLLMs) has brought forth a unique vulnerability: susceptibility to malicious attacks through visual inputs. This paper investigates the novel challenge of defending MLLMs against such attacks. Compared to large language models (LLMs), MLLMs include an additional image modality. We discover that images act as a “foreign language” that is not considered during safety alignment, making MLLMs more prone to producing harmful responses. Unfortunately, unlike the discrete tokens considered in text-based LLMs, the continuous nature of image signals presents significant alignment challenges, which poses difficulty to thoroughly cover all possible scenarios. This vulnerability is exacerbated by the fact that most state-of-the-art MLLMs are fine-tuned on limited image-text pairs that are much fewer than the extensive text-based pretraining corpus, which makes the MLLMs more prone to catastrophic forgetting of their original abilities during safety fine-tuning. To tackle these challenges, we introduce MLLM-Protector, a plug-and-play strategy that solves two subtasks: 1) identifying harmful responses via a lightweight harm detector, and 2) transforming harmful responses into harmless ones via a detoxifier. This approach effectively mitigates the risks posed by malicious visual inputs without compromising the original performance of MLLMs. Our results demonstrate that MLLM-Protector offers a robust solution to a previously unaddressed aspect of MLLM security.

pdf bib
GradSafe: Detecting Jailbreak Prompts for LLMs via Safety-Critical Gradient Analysis
Yueqi Xie | Minghong Fang | Renjie Pi | Neil Gong
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large Language Models (LLMs) face threats from jailbreak prompts. Existing methods for detecting jailbreak prompts are primarily online moderation APIs or finetuned LLMs. These strategies, however, often require extensive and resource-intensive data collection and training processes. In this study, we propose GradSafe, which effectively detects jailbreak prompts by scrutinizing the gradients of safety-critical parameters in LLMs. Our method is grounded in a pivotal observation: the gradients of an LLM’s loss for jailbreak prompts paired with compliance response exhibit similar patterns on certain safety-critical parameters. In contrast, safe prompts lead to different gradient patterns. Building on this observation, GradSafe analyzes the gradients from prompts (paired with compliance responses) to accurately detect jailbreak prompts. We show that GradSafe, applied to Llama-2 without further training, outperforms Llama Guard—despite its extensive finetuning with a large dataset—in detecting jailbreak prompts. This superior performance is consistent across both zero-shot and adaptation scenarios, as evidenced by our evaluations on ToxicChat and XSTest. The source code is available at https://github.com/xyq7/GradSafe.