Yufan Dang
2024
Experiential Co-Learning of Software-Developing Agents
Chen Qian
|
Yufan Dang
|
Jiahao Li
|
Wei Liu
|
Zihao Xie
|
YiFei Wang
|
Weize Chen
|
Cheng Yang
|
Xin Cong
|
Xiaoyin Che
|
Zhiyuan Liu
|
Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements in large language models (LLMs) have brought significant changes to various domains, especially through LLM-driven autonomous agents. A representative scenario is in software development, where LLM agents demonstrate efficient collaboration, task division, and assurance of software quality, markedly reducing the need for manual involvement. However, these agents frequently perform a variety of tasks independently, without benefiting from past experiences, which leads to repeated mistakes and inefficient attempts in multi-step task execution. To this end, we introduce Experiential Co-Learning, a novel LLM-agent learning framework in which instructor and assistant agents gather shortcut-oriented experiences from their historical trajectories and use these past experiences for future task execution. The extensive experiments demonstrate that the framework enables agents to tackle unseen software-developing tasks more effectively. We anticipate that our insights will guide LLM agents towards enhanced autonomy and contribute to their evolutionary growth in cooperative learning. The code and data are available at https://github.com/OpenBMB/ChatDev.
ChatDev: Communicative Agents for Software Development
Chen Qian
|
Wei Liu
|
Hongzhang Liu
|
Nuo Chen
|
Yufan Dang
|
Jiahao Li
|
Cheng Yang
|
Weize Chen
|
Yusheng Su
|
Xin Cong
|
Juyuan Xu
|
Dahai Li
|
Zhiyuan Liu
|
Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Software development is a complex task that necessitates cooperation among multiple members with diverse skills. Numerous studies used deep learning to improve specific phases in a waterfall model, such as design, coding, and testing. However, the deep learning model in each phase requires unique designs, leading to technical inconsistencies across various phases, which results in a fragmented and ineffective development process. In this paper, we introduce ChatDev, a chat-powered software development framework in which specialized agents driven by large language models (LLMs) are guided in what to communicate (via chat chain) and how to communicate (via communicative dehallucination). These agents actively contribute to the design, coding, and testing phases through unified language-based communication, with solutions derived from their multi-turn dialogues. We found their utilization of natural language is advantageous for system design, and communicating in programming language proves helpful in debugging. This paradigm demonstrates how linguistic communication facilitates multi-agent collaboration, establishing language as a unifying bridge for autonomous task-solving among LLM agents. The code and data are available at https://github.com/OpenBMB/ChatDev.
Search
Fix data
Co-authors
- Weize Chen 2
- Xin Cong 2
- Jiahao Li 2
- Wei Liu 2
- Zhiyuan Liu 2
- show all...
Venues
- acl2