Yufan Wang


2023

pdf bib
DSPM-NLG: A Dual Supervised Pre-trained Model for Few-shot Natural Language Generation in Task-oriented Dialogue System
Yufan Wang | Bowei Zou | Rui Fan | Ai Ti Aw | Tingting He
Findings of the Association for Computational Linguistics: ACL 2023

In few-shot settings, fully conveying the semantic information of the dialogue act is a crucial challenge for Natural Language Generation (NLG) in the task-oriented dialogue system. An interesting fact is that NLG and Spoken Language Understanding (SLU) are a natural dual problem pair. Suppose the response generated by the NLG module can be restored to the corresponding dialogue act by the SLU module, which reflects that the generated response fully conveys the semantic information of the dialogue act. Based on this idea, a novel Dual Supervised Pre-trained Model for a few-shot Natural Language Generation (DSPM-NLG) is proposed to regularize the pre-training process. We adopt a joint model with a dual supervised framework to learn the dual correlation between NLG and SLU from the perspective of probability. In addition, a slot-masked strategy is designed to enable the model to focus better on the key slot-value pairs. DSPM-NLG is continuously trained on existing public large-scale annotated data, which thoroughly learns the duality between two tasks to enhance the semantically controlling and generalization abilities of the pre-trained model. Experiments demonstrate that our proposed model performs outstandingly on the few-shot benchmark dataset and outperforms the previous SOTA results.

pdf bib
Making Pre-trained Language Models Better Learn Few-Shot Spoken Language Understanding in More Practical Scenarios
Yufan Wang | Jie Mei | Bowei Zou | Rui Fan | Tingting He | Ai Ti Aw
Findings of the Association for Computational Linguistics: ACL 2023

Most previous few-shot Spoken Language Understanding (SLU) models typically need to be trained on a set of data-rich source domains and adapt to the target domain with a few examples. In this paper, we explore a more practical scenario for few-shot SLU, in which we only assume access to a pre-trained language model and a few labeled examples without any other source domain data. We concentrate on understanding how far the few-shot SLU could be pushed in this setting. To this end, we develop a prompt-based intent detection model in few-shot settings, which leverages the BERT original pre-training next sentence prediction task and the prompt template to detect the user’s intent. For slot filling, we propose an approach of reconstructing slot labels, which reduces the training complexity by reducing the number of slot labels in few-shot settings. To evaluate the few-shot SLU for a more practical scenario, we present two benchmarks, FewShotATIS and FewShotSNIPS. And a dynamic sampling strategy is designed to construct the two datasets according to the learning difficulty of each intent and slot. Experiments on FewShotATIS and FewShotSNIPS demonstrate that our proposed model achieves state-of-the-art performance.