Yufang Wang


pdf bib
Evaluating Reading Comprehension Exercises Generated by LLMs: A Showcase of ChatGPT in Education Applications
Changrong Xiao | Sean Xin Xu | Kunpeng Zhang | Yufang Wang | Lei Xia
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023)

The recent advancement of pre-trained Large Language Models (LLMs), such as OpenAI’s ChatGPT, has led to transformative changes across fields. For example, developing intelligent systems in the educational sector that leverage the linguistic capabilities of LLMs demonstrates a visible potential. Though researchers have recently explored how ChatGPT could possibly assist in student learning, few studies have applied these techniques to real-world classroom settings involving teachers and students. In this study, we implement a reading comprehension exercise generation system that provides high-quality and personalized reading materials for middle school English learners in China. Extensive evaluations of the generated reading passages and corresponding exercise questions, conducted both automatically and manually, demonstrate that the system-generated materials are suitable for students and even surpass the quality of existing human-written ones. By incorporating first-hand feedback and suggestions from experienced educators, this study serves as a meaningful pioneering application of ChatGPT, shedding light on the future design and implementation of LLM-based systems in the educational context.