2024
pdf
bib
abs
Distantly-Supervised Joint Extraction with Noise-Robust Learning
Yufei Li
|
Xiao Yu
|
Yanghong Guo
|
Yanchi Liu
|
Haifeng Chen
|
Cong Liu
Findings of the Association for Computational Linguistics: ACL 2024
Joint entity and relation extraction is a process that identifies entity pairs and their relations using a single model. We focus on the problem of joint extraction in distantly-labeled data, whose labels are generated by aligning entity mentions with the corresponding entity and relation tags using a knowledge base (KB). One key challenge is the presence of noisy labels arising from both incorrect entity and relation annotations, which significantly impairs the quality of supervised learning. Existing approaches, either considering only one source of noise or making decisions using external knowledge, cannot well-utilize significant information in the training data. We propose DENRL, a generalizable framework that 1) incorporates a lightweight transformer backbone into a sequence labeling scheme for joint tagging, and 2) employs a noise-robust framework that regularizes the tagging model with significant relation patterns and entity-relation dependencies, then iteratively self-adapts to instances with less noise from both sources. Surprisingly, experiments on two benchmark datasets show that DENRL, using merely its own parametric distribution and simple data-driven heuristics, outperforms strong baselines by a large margin with better interpretability.
pdf
bib
abs
Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack
Yu Fu
|
Yufei Li
|
Wen Xiao
|
Cong Liu
|
Yue Dong
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent developments in balancing the usefulness and safety of Large Language Models (LLMs) have raised a critical question: Are mainstream NLP tasks adequately aligned with safety consideration? Our study, focusing on safety-sensitive documents obtained through adversarial attacks, reveals significant disparities in the safety alignment of various NLP tasks. For instance, LLMs can effectively summarize malicious long documents but often refuse to translate them. This discrepancy highlights a previously unidentified vulnerability: attacks exploiting tasks with weaker safety alignment, like summarization, can potentially compromise the integrity of tasks traditionally deemed more robust, such as translation and question-answering (QA). Moreover, the concurrent use of multiple NLP tasks with lesser safety alignment increases the risk of LLMs inadvertently processing harmful content. We demonstrate these vulnerabilities in various safety-aligned LLMs, particularly Llama2 models, Gemini and GPT-4, indicating an urgent need for strengthening safety alignments across a broad spectrum of NLP tasks.
2023
pdf
bib
abs
White-Box Multi-Objective Adversarial Attack on Dialogue Generation
Yufei Li
|
Zexin Li
|
Yingfan Gao
|
Cong Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Pre-trained transformers are popular in state-of-the-art dialogue generation (DG) systems. Such language models are, however, vulnerable to various adversarial samples as studied in traditional tasks such as text classification, which inspires our curiosity about their robustness in DG systems. One main challenge of attacking DG models is that perturbations on the current sentence can hardly degrade the response accuracy because the unchanged chat histories are also considered for decision-making. Instead of merely pursuing pitfalls of performance metrics such as BLEU, ROUGE, we observe that crafting adversarial samples to force longer generation outputs benefits attack effectiveness—the generated responses are typically irrelevant, lengthy, and repetitive. To this end, we propose a white-box multi-objective attack method called DGSlow. Specifically, DGSlow balances two objectives—generation accuracy and length, via a gradient-based multi-objective optimizer and applies an adaptive searching mechanism to iteratively craft adversarial samples with only a few modifications. Comprehensive experiments on four benchmark datasets demonstrate that DGSlow could significantly degrade state-of-the-art DG models with a higher success rate than traditional accuracy-based methods. Besides, our crafted sentences also exhibit strong transferability in attacking other models.
pdf
bib
abs
Uncertainty-Aware Bootstrap Learning for Joint Extraction on Distantly-Supervised Data
Yufei Li
|
Xiao Yu
|
Yanchi Liu
|
Haifeng Chen
|
Cong Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
Jointly extracting entity pairs and their relations is challenging when working on distantly-supervised data with ambiguous or noisy labels. To mitigate such impact, we propose uncertainty-aware bootstrap learning, which is motivated by the intuition that the higher uncertainty of an instance, the more likely the model confidence is inconsistent with the ground truths. Specifically, we first explore instance-level data uncertainty to create an initial high-confident examples. Such subset serves as filtering noisy instances and facilitating the model to converge fast at the early stage. During bootstrap learning, we propose self-ensembling as a regularizer to alleviate inter-model uncertainty produced by noisy labels. We further define probability variance of joint tagging probabilities to estimate inner-model parametric uncertainty, which is used to select and build up new reliable training instances for the next iteration. Experimental results on two large datasets reveal that our approach outperforms existing strong baselines and related methods.
2022
pdf
bib
abs
SHARE: a System for Hierarchical Assistive Recipe Editing
Shuyang Li
|
Yufei Li
|
Jianmo Ni
|
Julian McAuley
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
The large population of home cooks with dietary restrictions is under-served by existing cooking resources and recipe generation models. To help them, we propose the task of controllable recipe editing: adapt a base recipe to satisfy a user-specified dietary constraint. This task is challenging, and cannot be adequately solved with human-written ingredient substitution rules or existing end-to-end recipe generation models. We tackle this problem with SHARE: a System for Hierarchical Assistive Recipe Editing, which performs simultaneous ingredient substitution before generating natural-language steps using the edited ingredients. By decoupling ingredient and step editing, our step generator can explicitly integrate the available ingredients. Experiments on the novel RecipePairs dataset—83K pairs of similar recipes where each recipe satisfies one of seven dietary constraints—demonstrate that SHARE produces convincing, coherent recipes that are appropriate for a target dietary constraint. We further show through human evaluations and real-world cooking trials that recipes edited by SHARE can be easily followed by home cooks to create appealing dishes.
2017
pdf
bib
abs
XJSA at SemEval-2017 Task 4: A Deep System for Sentiment Classification in Twitter
Yazhou Hao
|
YangYang Lan
|
Yufei Li
|
Chen Li
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)
This paper describes the XJSA System submission from XJTU. Our system was created for SemEval2017 Task 4 – subtask A which is very popular and fundamental. The system is based on convolutional neural network and word embedding. We used two pre-trained word vectors and adopt a dynamic strategy for k-max pooling.