Yuichiroh Matsubayashi


2024

pdf bib
A Multimodal Dialogue System to Lead Consensus Building with Emotion-Displaying
Shinnosuke Nozue | Yuto Nakano | Shoji Moriya | Tomoki Ariyama | Kazuma Kokuta | Suchun Xie | Kai Sato | Shusaku Sone | Ryohei Kamei | Reina Akama | Yuichiroh Matsubayashi | Keisuke Sakaguchi
Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue

The evolution of large language models has enabled fluent dialogue, increasing interest in the coexistence of humans and avatars. An essential aspect of achieving this coexistence involves developing sophisticated dialogue systems that can influence user behavior. In this background, we propose an effective multimodal dialogue system designed to promote consensus building with humans. Our system employs a slot-filling strategy to guide discussions and attempts to influence users with suggestions through emotional expression and intent conveyance via its avatar. These innovations have resulted in our system achieving the highest performance in a competition evaluating consensus building between humans and dialogue systems. We hope that our research will promote further discussion on the development of dialogue systems that enhance consensus building in human collaboration.

pdf bib
Japanese-English Sentence Translation Exercises Dataset for Automatic Grading
Naoki Miura | Hiroaki Funayama | Seiya Kikuchi | Yuichiroh Matsubayashi | Yuya Iwase | Kentaro Inui
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

This paper proposes the task of automatic assessment of Sentence Translation Exercises (STEs), that have been used in the early stage of L2 language learning.We formalize the task as grading student responses for each rubric criterion pre-specified by the educators.We then create a dataset for STE between Japanese and English including 21 questions, along with a total of 3,498 student responses (167 on average).The answer responses were collected from students and crowd workers.Using this dataset, we demonstrate the performance of baselines including a finetuned BERT model and GPT-3.5 with few-shot learning. Experimental results showed that the baseline model with fine-tuned BERT was able to classify correct responses with approximately 90% in F1, but only less than 80% for incorrect responses. Furthermore, GPT-3.5 with few-shot learning shows a poorer result than the BERT model, indicating that our newly proposed task presents a challenging issue, even for the state-of-the-art large language model.

pdf bib
To Drop or Not to Drop? Predicting Argument Ellipsis Judgments: A Case Study in Japanese
Yukiko Ishizuki | Tatsuki Kuribayashi | Yuichiroh Matsubayashi | Ryohei Sasano | Kentaro Inui
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Speakers sometimes omit certain arguments of a predicate in a sentence; such omission is especially frequent in pro-drop languages. This study addresses a question about ellipsis—what can explain the native speakers’ ellipsis decisions?—motivated by the interest in human discourse processing and writing assistance for this choice. To this end, we first collect large-scale human annotations of whether and why a particular argument should be omitted across over 2,000 data points in the balanced corpus of Japanese, a prototypical pro-drop language. The data indicate that native speakers overall share common criteria for such judgments and further clarify their quantitative characteristics, e.g., the distribution of related linguistic factors in the balanced corpus. Furthermore, the performance of the language model–based argument ellipsis judgment model is examined, and the gap between the systems’ prediction and human judgments in specific linguistic aspects is revealed. We hope our fundamental resource encourages further studies on natural human ellipsis judgment.

2021

pdf bib
Pseudo Zero Pronoun Resolution Improves Zero Anaphora Resolution
Ryuto Konno | Shun Kiyono | Yuichiroh Matsubayashi | Hiroki Ouchi | Kentaro Inui
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Masked language models (MLMs) have contributed to drastic performance improvements with regard to zero anaphora resolution (ZAR). To further improve this approach, in this study, we made two proposals. The first is a new pretraining task that trains MLMs on anaphoric relations with explicit supervision, and the second proposal is a new finetuning method that remedies a notorious issue, the pretrain-finetune discrepancy. Our experiments on Japanese ZAR demonstrated that our two proposals boost the state-of-the-art performance, and our detailed analysis provides new insights on the remaining challenges.

2020

pdf bib
An Empirical Study of Contextual Data Augmentation for Japanese Zero Anaphora Resolution
Ryuto Konno | Yuichiroh Matsubayashi | Shun Kiyono | Hiroki Ouchi | Ryo Takahashi | Kentaro Inui
Proceedings of the 28th International Conference on Computational Linguistics

One critical issue of zero anaphora resolution (ZAR) is the scarcity of labeled data. This study explores how effectively this problem can be alleviated by data augmentation. We adopt a state-of-the-art data augmentation method, called the contextual data augmentation (CDA), that generates labeled training instances using a pretrained language model. The CDA has been reported to work well for several other natural language processing tasks, including text classification and machine translation. This study addresses two underexplored issues on CDA, that is, how to reduce the computational cost of data augmentation and how to ensure the quality of the generated data. We also propose two methods to adapt CDA to ZAR: [MASK]-based augmentation and linguistically-controlled masking. Consequently, the experimental results on Japanese ZAR show that our methods contribute to both the accuracy gainand the computation cost reduction. Our closer analysis reveals that the proposed method can improve the quality of the augmented training data when compared to the conventional CDA.

pdf bib
Preventing Critical Scoring Errors in Short Answer Scoring with Confidence Estimation
Hiroaki Funayama | Shota Sasaki | Yuichiroh Matsubayashi | Tomoya Mizumoto | Jun Suzuki | Masato Mita | Kentaro Inui
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

Many recent Short Answer Scoring (SAS) systems have employed Quadratic Weighted Kappa (QWK) as the evaluation measure of their systems. However, we hypothesize that QWK is unsatisfactory for the evaluation of the SAS systems when we consider measuring their effectiveness in actual usage. We introduce a new task formulation of SAS that matches the actual usage. In our formulation, the SAS systems should extract as many scoring predictions that are not critical scoring errors (CSEs). We conduct the experiments in our new task formulation and demonstrate that a typical SAS system can predict scores with zero CSE for approximately 50% of test data at maximum by filtering out low-reliablility predictions on the basis of a certain confidence estimation. This result directly indicates the possibility of reducing half the scoring cost of human raters, which is more preferable for the evaluation of SAS systems.

2018

pdf bib
A Melody-Conditioned Lyrics Language Model
Kento Watanabe | Yuichiroh Matsubayashi | Satoru Fukayama | Masataka Goto | Kentaro Inui | Tomoyasu Nakano
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

This paper presents a novel, data-driven language model that produces entire lyrics for a given input melody. Previously proposed models for lyrics generation suffer from the inability of capturing the relationship between lyrics and melody partly due to the unavailability of lyrics-melody aligned data. In this study, we first propose a new practical method for creating a large collection of lyrics-melody aligned data and then create a collection of 1,000 lyrics-melody pairs augmented with precise syllable-note alignments and word/sentence/paragraph boundaries. We then provide a quantitative analysis of the correlation between word/sentence/paragraph boundaries in lyrics and melodies. We then propose an RNN-based lyrics language model conditioned on a featurized melody. Experimental results show that the proposed model generates fluent lyrics while maintaining the compatibility between boundaries of lyrics and melody structures.

pdf bib
Multi-dialect Neural Machine Translation and Dialectometry
Kaori Abe | Yuichiroh Matsubayashi | Naoaki Okazaki | Kentaro Inui
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation

pdf bib
Distance-Free Modeling of Multi-Predicate Interactions in End-to-End Japanese Predicate-Argument Structure Analysis
Yuichiroh Matsubayashi | Kentaro Inui
Proceedings of the 27th International Conference on Computational Linguistics

Capturing interactions among multiple predicate-argument structures (PASs) is a crucial issue in the task of analyzing PAS in Japanese. In this paper, we propose new Japanese PAS analysis models that integrate the label prediction information of arguments in multiple PASs by extending the input and last layers of a standard deep bidirectional recurrent neural network (bi-RNN) model. In these models, using the mechanisms of pooling and attention, we aim to directly capture the potential interactions among multiple PASs, without being disturbed by the word order and distance. Our experiments show that the proposed models improve the prediction accuracy specifically for cases where the predicate and argument are in an indirect dependency relation and achieve a new state of the art in the overall F1 on a standard benchmark corpus.

2017

pdf bib
Revisiting the Design Issues of Local Models for Japanese Predicate-Argument Structure Analysis
Yuichiroh Matsubayashi | Kentaro Inui
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

The research trend in Japanese predicate-argument structure (PAS) analysis is shifting from pointwise prediction models with local features to global models designed to search for globally optimal solutions. However, the existing global models tend to employ only relatively simple local features; therefore, the overall performance gains are rather limited. The importance of designing a local model is demonstrated in this study by showing that the performance of a sophisticated local model can be considerably improved with recent feature embedding methods and a feature combination learning based on a neural network, outperforming the state-of-the-art global models in F1 on a common benchmark dataset.

2016

pdf bib
Modeling Discourse Segments in Lyrics Using Repeated Patterns
Kento Watanabe | Yuichiroh Matsubayashi | Naho Orita | Naoaki Okazaki | Kentaro Inui | Satoru Fukayama | Tomoyasu Nakano | Jordan Smith | Masataka Goto
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This study proposes a computational model of the discourse segments in lyrics to understand and to model the structure of lyrics. To test our hypothesis that discourse segmentations in lyrics strongly correlate with repeated patterns, we conduct the first large-scale corpus study on discourse segments in lyrics. Next, we propose the task to automatically identify segment boundaries in lyrics and train a logistic regression model for the task with the repeated pattern and textual features. The results of our empirical experiments illustrate the significance of capturing repeated patterns in predicting the boundaries of discourse segments in lyrics.

pdf bib
Modeling Context-sensitive Selectional Preference with Distributed Representations
Naoya Inoue | Yuichiroh Matsubayashi | Masayuki Ono | Naoaki Okazaki | Kentaro Inui
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

This paper proposes a novel problem setting of selectional preference (SP) between a predicate and its arguments, called as context-sensitive SP (CSP). CSP models the narrative consistency between the predicate and preceding contexts of its arguments, in addition to the conventional SP based on semantic types. Furthermore, we present a novel CSP model that extends the neural SP model (Van de Cruys, 2014) to incorporate contextual information into the distributed representations of arguments. Experimental results demonstrate that the proposed CSP model successfully learns CSP and outperforms the conventional SP model in coreference cluster ranking.

2014

pdf bib
Modeling Structural Topic Transitions for Automatic Lyrics Generation
Kento Watanabe | Yuichiroh Matsubayashi | Kentaro Inui | Masataka Goto
Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing

2012

pdf bib
Building Japanese Predicate-argument Structure Corpus using Lexical Conceptual Structure
Yuichiroh Matsubayashi | Yusuke Miyao | Akiko Aizawa
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

This paper introduces our study on creating a Japanese corpus that is annotated using semantically-motivated predicate-argument structures. We propose an annotation framework based on Lexical Conceptual Structure (LCS), where semantic roles of arguments are represented through a semantic structure decomposed by several primitive predicates. As a first stage of the project, we extended Jackendoff 's LCS theory to increase generality of expression and coverage for verbs frequently appearing in the corpus, and successfully created LCS structures for 60 frequent Japanese predicates in Kyoto university Text Corpus (KTC). In this paper, we report our framework for creating the corpus and the current status of creating an LCS dictionary for Japanese predicates.

pdf bib
Framework of Semantic Role Assignment based on Extended Lexical Conceptual Structure: Comparison with VerbNet and FrameNet
Yuichiroh Matsubayashi | Yusuke Miyao | Akiko Aizawa
Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics

2011

pdf bib
Safety Information Mining — What can NLP do in a disaster—
Graham Neubig | Yuichiroh Matsubayashi | Masato Hagiwara | Koji Murakami
Proceedings of 5th International Joint Conference on Natural Language Processing

2010

pdf bib
Mining Coreference Relations between Formulas and Text using Wikipedia
Minh Nghiem Quoc | Keisuke Yokoi | Yuichiroh Matsubayashi | Akiko Aizawa
Proceedings of the Second Workshop on NLP Challenges in the Information Explosion Era (NLPIX 2010)

2009

pdf bib
A Comparative Study on Generalization of Semantic Roles in FrameNet
Yuichiroh Matsubayashi | Naoaki Okazaki | Jun’ichi Tsujii
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP