Yuki Matsuda


2024

pdf bib
Arukikata Travelogue Dataset with Geographic Entity Mention, Coreference, and Link Annotation
Shohei Higashiyama | Hiroki Ouchi | Hiroki Teranishi | Hiroyuki Otomo | Yusuke Ide | Aitaro Yamamoto | Hiroyuki Shindo | Yuki Matsuda | Shoko Wakamiya | Naoya Inoue | Ikuya Yamada | Taro Watanabe
Findings of the Association for Computational Linguistics: EACL 2024

Geoparsing is a fundamental technique for analyzing geo-entity information in text, which is useful for geographic applications, e.g., tourist spot recommendation. We focus on document-level geoparsing that considers geographic relatedness among geo-entity mentions and present a Japanese travelogue dataset designed for training and evaluating document-level geoparsing systems. Our dataset comprises 200 travelogue documents with rich geo-entity information: 12,171 mentions, 6,339 coreference clusters, and 2,551 geo-entities linked to geo-database entries.

2023

pdf bib
Towards Breaking the Self-imposed Filter Bubble in Argumentative Dialogues
Annalena Aicher | Daniel Kornmueller | Yuki Matsuda | Stefan Ultes | Wolfgang Minker | Keiichi Yasumoto
Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue

Human users tend to selectively ignore information that contradicts their pre-existing beliefs or opinions in their process of information seeking. These “self-imposed filter bubbles” (SFB) pose a significant challenge for cooperative argumentative dialogue systems aiming to build an unbiased opinion and a better understanding of the topic at hand. To address this issue, we develop a strategy for overcoming users’ SFB within the course of the interaction. By continuously modeling the user’s position in relation to the SFB, we are able to identify the respective arguments which maximize the probability to get outside the SFB and present them to the user. We implemented this approach in an argumentative dialogue system and evaluated in a laboratory user study with 60 participants to show its validity and applicability. The findings suggest that the strategy was successful in breaking users’ SFBs and promoting a more reflective and comprehensive discussion of the topic.

2020

pdf bib
Evaluation of Argument Search Approaches in the Context of Argumentative Dialogue Systems
Niklas Rach | Yuki Matsuda | Johannes Daxenberger | Stefan Ultes | Keiichi Yasumoto | Wolfgang Minker
Proceedings of the Twelfth Language Resources and Evaluation Conference

We present an approach to evaluate argument search techniques in view of their use in argumentative dialogue systems by assessing quality aspects of the retrieved arguments. To this end, we introduce a dialogue system that presents arguments by means of a virtual avatar and synthetic speech to users and allows them to rate the presented content in four different categories (Interesting, Convincing, Comprehensible, Relation). The approach is applied in a user study in order to compare two state of the art argument search engines to each other and with a system based on traditional web search. The results show a significant advantage of the two search engines over the baseline. Moreover, the two search engines show significant advantages over each other in different categories, thereby reflecting strengths and weaknesses of the different underlying techniques.