Yun Luo


2023

pdf bib
Enhancing Argument Structure Extraction with Efficient Leverage of Contextual Information
Yun Luo | Zhen Yang | Fandong Meng | Yingjie Li | Jie Zhou | Yue Zhang
Findings of the Association for Computational Linguistics: EMNLP 2023

Argument structure extraction (ASE) aims to identify the discourse structure of arguments within documents. Previous research has demonstrated that contextual information is crucial for developing an effective ASE model. However, we observe that merely concatenating sentences in a contextual window does not fully utilize contextual information and can sometimes lead to excessive attention on less informative sentences. To tackle this challenge, we propose an Efficient Context-aware ASE model (ECASE) that fully exploits contextual information by enhancing modeling capacity and augmenting training data. Specifically, we introduce a sequence-attention module and distance-weighted similarity loss to aggregate contextual information and argumentative information. Additionally, we augment the training data by randomly masking discourse markers and sentences, which reduces the model’s reliance on specific words or less informative sentences. Our experiments on five datasets from various domains demonstrate that our model achieves state-of-the-art performance. Furthermore, ablation studies confirm the effectiveness of each module in our model.

2022

pdf bib
Mere Contrastive Learning for Cross-Domain Sentiment Analysis
Yun Luo | Fang Guo | Zihan Liu | Yue Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Cross-domain sentiment analysis aims to predict the sentiment of texts in the target domain using the model trained on the source domain to cope with the scarcity of labeled data. Previous studies are mostly cross-entropy-based methods for the task, which suffer from instability and poor generalization. In this paper, we explore contrastive learning on the cross-domain sentiment analysis task. We propose a modified contrastive objective with in-batch negative samples so that the sentence representations from the same class can be pushed close while those from the different classes become further apart in the latent space. Experiments on two widely used datasets show that our model can achieve state-of-the-art performance in both cross-domain and multi-domain sentiment analysis tasks. Meanwhile, visualizations demonstrate the effectiveness of transferring knowledge learned in the source domain to the target domain and the adversarial test verifies the robustness of our model.

pdf bib
Exploiting Sentiment and Common Sense for Zero-shot Stance Detection
Yun Luo | Zihan Liu | Yuefeng Shi | Stan Z. Li | Yue Zhang
Proceedings of the 29th International Conference on Computational Linguistics

The stance detection task aims to classify the stance toward given documents and topics. Since the topics can be implicit in documents and unseen in training data for zero-shot settings, we propose to boost the transferability of the stance detection model by using sentiment and commonsense knowledge, which are seldom considered in previous studies. Our model includes a graph autoencoder module to obtain commonsense knowledge and a stance detection module with sentiment and commonsense. Experimental results show that our model outperforms the state-of-the-art methods on the zero-shot and few-shot benchmark dataset–VAST. Meanwhile, ablation studies prove the significance of each module in our model. Analysis of the relations between sentiment, common sense, and stance indicates the effectiveness of sentiment and common sense.