Yunke Zhang


2025

pdf bib
Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition
Yuming Yang | Wantong Zhao | Caishuang Huang | Junjie Ye | Xiao Wang | Huiyuan Zheng | Yang Nan | Yuran Wang | Xueying Xu | Kaixin Huang | Yunke Zhang | Tao Gui | Qi Zhang | Xuanjing Huang
Proceedings of the 31st International Conference on Computational Linguistics

Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets neglects their inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain adaptation. To address this, we present B2NERD, a compact dataset designed to guide LLMs’ generalization in Open NER under a universal entity taxonomy. B2NERD is refined from 54 existing English and Chinese datasets using a two-step process. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly enhances LLMs’ Open NER capabilities. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages. The data, models, and code are publicly available at https://github.com/UmeanNever/B2NER.

2021

pdf bib
HiTRANS: A Hierarchical Transformer Network for Nested Named Entity Recognition
Zhiwei Yang | Jing Ma | Hechang Chen | Yunke Zhang | Yi Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utilize complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.