Yunlong Liang


2024

pdf bib
Continual Learning with Semi-supervised Contrastive Distillation for Incremental Neural Machine Translation
Yunlong Liang | Fandong Meng | Jiaan Wang | Jinan Xu | Yufeng Chen | Jie Zhou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Incrementally expanding the capability of an existing translation model to solve new domain tasks over time is a fundamental and practical problem, which usually suffers from catastrophic forgetting. Generally, multi-domain learning can be seen as a good solution. However, there are two drawbacks: 1) it requires having the training data for all domains available at the same time, which may be unrealistic due to storage or privacy concerns; 2) it requires re-training the model on the data of all domains from scratch when adding a new domain and this is time-consuming and computationally expensive. To address these issues, we present a semi-supervised contrastive distillation framework for incremental neural machine translation. Specifically, to avoid catastrophic forgetting, we propose to exploit unlabeled data from the same distributions of the older domains through knowledge distillation. Further, to ensure the distinct domain characteristics in the model as the number of domains increases, we devise a cross-domain contrastive objective to enhance the distilled knowledge. Extensive experiments on domain translation benchmarks show that our approach, without accessing any previous training data or re-training on all domains from scratch, can significantly prevent the model from forgetting previously learned knowledge while obtaining good performance on the incrementally added domains. The code and data with step-by-step instructions will be released upon acceptance.

pdf bib
Cross-Lingual Knowledge Editing in Large Language Models
Jiaan Wang | Yunlong Liang | Zengkui Sun | Yuxuan Cao | Jiarong Xu | Fandong Meng
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge editing aims to change language models’ performance on several special cases (i.e., editing scope) by infusing the corresponding expected knowledge into them. With the recent advancements in large language models (LLMs), knowledge editing has been shown as a promising technique to adapt LLMs to new knowledge without retraining from scratch. However, most of the previous studies neglect the multi-lingual nature of some main-stream LLMs (e.g., LLaMA, ChatGPT and GPT-4), and typically focus on monolingual scenarios, where LLMs are edited and evaluated in the same language. As a result, it is still unknown the effect of source language editing on a different target language. In this paper, we aim to figure out this cross-lingual effect in knowledge editing. Specifically, we first collect a large-scale cross-lingual synthetic dataset by translating ZsRE from English to Chinese. Then, we conduct English editing on various knowledge editing methods covering different paradigms, and evaluate their performance in Chinese, and vice versa. To give deeper analyses of the cross-lingual effect, the evaluation includes four aspects, i.e., reliability, generality, locality and portability. Furthermore, we analyze the inconsistent behaviors of the edited models and discuss their specific challenges.

2023

pdf bib
Summary-Oriented Vision Modeling for Multimodal Abstractive Summarization
Yunlong Liang | Fandong Meng | Jinan Xu | Jiaan Wang | Yufeng Chen | Jie Zhou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The goal of multimodal abstractive summarization (MAS) is to produce a concise summary given the multimodal data (text and vision). Existing studies on MAS mainly focus on how to effectively use the extracted visual features, having achieved impressive success on the high-resource English dataset. However, less attention has been paid to the quality of the visual features to the summary, which may limit the model performance, especially in the low- and zero-resource scenarios. In this paper, we propose to improve the summary quality through summary-oriented visual features. To this end, we devise two auxiliary tasks including vision to summary task and masked image modeling task. Together with the main summarization task, we optimize the MAS model via the training objectives of all these tasks. By these means, the MAS model can be enhanced by capturing the summary-oriented visual features, thereby yielding more accurate summaries. Experiments on 44 languages, covering mid-high-, low-, and zero-resource scenarios, verify the effectiveness and superiority of the proposed approach, which achieves state-of-the-art performance under all scenarios. Additionally, we will contribute a large-scale multilingual multimodal abstractive summarization (MM-Sum) dataset to the research community.

pdf bib
Towards Understanding and Improving Knowledge Distillation for Neural Machine Translation
Songming Zhang | Yunlong Liang | Shuaibo Wang | Yufeng Chen | Wenjuan Han | Jian Liu | Jinan Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Knowledge distillation (KD) is a promising technique for model compression in neural machine translation. However, where the knowledge hides in KD is still not clear, which may hinder the development of KD. In this work, we first unravel this mystery from an empirical perspective and show that the knowledge comes from the top-1 predictions of teachers, which also helps us build a potential connection between word- and sequence-level KD. Further, we point out two inherent issues in vanilla word-level KD based on this finding. Firstly, the current objective of KD spreads its focus to whole distributions to learn the knowledge, yet lacks special treatment on the most crucial top-1 information. Secondly, the knowledge is largely covered by the golden information due to the fact that most top-1 predictions of teachers overlap with ground-truth tokens, which further restricts the potential of KD. To address these issues, we propose a new method named Top-1 Information Enhanced Knowledge Distillation (TIE-KD). Specifically, we design a hierarchical ranking loss to enforce the learning of the top-1 information from the teacher. Additionally, we develop an iterative KD procedure to infuse more additional knowledge by distilling on the data without ground-truth targets. Experiments on WMT’14 English-German, WMT’14 English-French and WMT’16 English-Romanian demonstrate that our method can respectively boost Transformerbase students by +1.04, +0.60 and +1.11 BLEU scores and significantly outperforms the vanilla word-level KD baseline. Besides, our method shows higher generalizability on different teacher-student capacity gaps than existing KD techniques.

pdf bib
Towards Unifying Multi-Lingual and Cross-Lingual Summarization
Jiaan Wang | Fandong Meng | Duo Zheng | Yunlong Liang | Zhixu Li | Jianfeng Qu | Jie Zhou
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

To adapt text summarization to the multilingual world, previous work proposes multi-lingual summarization (MLS) and cross-lingual summarization (CLS). However, these two tasks have been studied separately due to the different definitions, which limits the compatible and systematic research on both of them. In this paper, we aim to unify MLS and CLS into a more general setting, i.e., many-to-many summarization (M2MS), where a single model could process documents in any language and generate their summaries also in any language. As the first step towards M2MS, we conduct preliminary studies to show that M2MS can better transfer task knowledge across different languages than MLS and CLS. Furthermore, we propose Pisces, a pre-trained M2MS model that learns language modeling, cross-lingual ability and summarization ability via three-stage pre-training. Experimental results indicate that our Pisces significantly outperforms the state-of-the-art baselines, especially in the zero-shot directions, where there is no training data from the source-language documents to the target-language summaries.

pdf bib
RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training
Chulun Zhou | Yunlong Liang | Fandong Meng | Jinan Xu | Jinsong Su | Jie Zhou
Findings of the Association for Computational Linguistics: ACL 2023

Multilingual vision-language (V&L) pre-training has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain challenges limiting further improvements of V&L pre-trained models in multilingual settings. Particularly, current V&L pre-training methods rely heavily on strictly-aligned multilingual image-text pairs generated from English-centric datasets through machine translation. However, the cost of collecting and translating such strictly-aligned datasets is usually unbearable. In this paper, we propose Regularized Contrastive Cross-lingual Cross-modal (RC3) pre-training, which further exploits more abundant weakly-aligned multilingual image-text pairs. Specifically, we design a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs according to textual relevance. Besides, existing V&L pre-training approaches mainly deal with visual inputs by either region-of-interest (ROI) features or patch embeddings. We flexibly integrate the two forms of visual features into our model for pre-training and downstream multi-modal tasks. Extensive experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method over competitive contrast models with strong zero-shot capability.

pdf bib
Understanding Translationese in Cross-Lingual Summarization
Jiaan Wang | Fandong Meng | Yunlong Liang | Tingyi Zhang | Jiarong Xu | Zhixu Li | Jie Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023

Given a document in a source language, cross-lingual summarization (CLS) aims at generating a concise summary in a different target language. Unlike monolingual summarization (MS), naturally occurring source-language documents paired with target-language summaries are rare. To collect large-scale CLS data, existing datasets typically involve translation in their creation. However, the translated text is distinguished from the text originally written in that language, i.e., translationese. In this paper, we first confirm that different approaches of constructing CLS datasets will lead to different degrees of translationese. Then we systematically investigate how translationese affects CLS model evaluation and performance when it appears in source documents or target summaries. In detail, we find that (1) the translationese in documents or summaries of test sets might lead to the discrepancy between human judgment and automatic evaluation; (2) the translationese in training sets would harm model performance in real-world applications; (3) though machine-translated documents involve translationese, they are very useful for building CLS systems on low-resource languages under specific training strategies. Lastly, we give suggestions for future CLS research including dataset and model developments. We hope that our work could let researchers notice the phenomenon of translationese in CLS and take it into account in the future.

pdf bib
D2TV: Dual Knowledge Distillation and Target-oriented Vision Modeling for Many-to-Many Multimodal Summarization
Yunlong Liang | Fandong Meng | Jiaan Wang | Jinan Xu | Yufeng Chen | Jie Zhou
Findings of the Association for Computational Linguistics: EMNLP 2023

Many-to-many multimodal summarization (M3S) task aims to generate summaries in any language with document inputs in any language and the corresponding image sequence, which essentially comprises of multimodal monolingual summarization (MMS) and multimodal cross-lingual summarization (MXLS) tasks. Although much work has been devoted to either MMS or MXLS, little research pays attention to the M3S task. Besides, existing studies mainly focus on 1) utilizing MMS to enhance MXLS via knowledge distillation without considering the performance of MMS or 2) improving MMS models by filtering summary-unrelated visual features with implicit learning or explicitly complex training objectives. In this paper, we first introduce a general and practical task, i.e., M3S. Further, we propose a dual knowledge distillation and target-oriented vision modeling framework for the M3S task. Specifically, the dual knowledge distillation method guarantees that the knowledge of MMS and MXLS can be transferred to each other and thus mutually prompt both of them. To offer target-oriented visual features, a simple yet effective target-oriented contrastive objective is designed and responsible for discarding needless visual information. Extensive experiments on the many-to-many setting show the effectiveness of the proposed approach. Additionally, we contribute a many-to-many multimodal summarization (lmttM3Sum) dataset with 44 languages to facilitate future research.

pdf bib
A Quality-based Syntactic Template Retriever for Syntactically-Controlled Paraphrase Generation
Xue Zhang | Songming Zhang | Yunlong Liang | Yufeng Chen | Jian Liu | Wenjuan Han | Jinan Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Existing syntactically-controlled paraphrase generation (SPG) models perform promisingly with human-annotated or well-chosen syntactic templates. However, the difficulty of obtaining such templates actually hinders the practical application of SPG models. For one thing, the prohibitive cost makes it unfeasible to manually design decent templates for every source sentence. For another, the templates automatically retrieved by current heuristic methods are usually unreliable for SPG models to generate qualified paraphrases. To escape this dilemma, we propose a novel Quality-based Syntactic Template Retriever (QSTR) to retrieve templates based on the quality of the to-be-generated paraphrases. Furthermore, for situations requiring multiple paraphrases for each source sentence, we design a Diverse Templates Search (DTS) algorithm, which can enhance the diversity between paraphrases without sacrificing quality. Experiments demonstrate that QSTR can significantly surpass existing retrieval methods in generating high-quality paraphrases and even perform comparably with human-annotated templates in terms of reference-free metrics. Additionally, human evaluation and the performance on downstream tasks using our generated paraphrases for data augmentation showcase the potential of our QSTR and DTS algorithm in practical scenarios.

pdf bib
Is ChatGPT a Good NLG Evaluator? A Preliminary Study
Jiaan Wang | Yunlong Liang | Fandong Meng | Zengkui Sun | Haoxiang Shi | Zhixu Li | Jinan Xu | Jianfeng Qu | Jie Zhou
Proceedings of the 4th New Frontiers in Summarization Workshop

Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.

pdf bib
Zero-Shot Cross-Lingual Summarization via Large Language Models
Jiaan Wang | Yunlong Liang | Fandong Meng | Beiqi Zou | Zhixu Li | Jianfeng Qu | Jie Zhou
Proceedings of the 4th New Frontiers in Summarization Workshop

Given a document in a source language, cross-lingual summarization (CLS) aims to generate a summary in a different target language. Recently, the emergence of Large Language Models (LLMs), such as GPT-3.5, ChatGPT and GPT-4, has attracted wide attention from the computational linguistics community. However, it is not yet known the performance of LLMs on CLS. In this report, we empirically use various prompts to guide LLMs to perform zero-shot CLS from different paradigms (i.e., end-to-end and pipeline), and provide a preliminary evaluation on the generated summaries. We find that ChatGPT and GPT-4 originally prefer to produce lengthy summaries with detailed information. These two LLMs can further balance informativeness and conciseness with the help of an interactive prompt, significantly improving their CLS performance. Experimental results on three widely-used CLS datasets show that GPT-4 achieves state-of-the-art zero-shot CLS performance, and performs competitively compared with the fine-tuned mBART-50. Moreover, we also find some multi-lingual and bilingual LLMs (i.e., BLOOMZ, ChatGLM-6B, Vicuna-13B and ChatYuan) have limited zero-shot CLS ability. Due to the composite nature of CLS, which requires models to perform summarization and translation simultaneously, accomplishing this task in a zero-shot manner is even a challenge for LLMs. Therefore, we sincerely hope and recommend future LLM research could use CLS as a testbed.

2022

pdf bib
A Variational Hierarchical Model for Neural Cross-Lingual Summarization
Yunlong Liang | Fandong Meng | Chulun Zhou | Jinan Xu | Yufeng Chen | Jinsong Su | Jie Zhou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The goal of the cross-lingual summarization (CLS) is to convert a document in one language (e.g., English) to a summary in another one (e.g., Chinese). The CLS task is essentially the combination of machine translation (MT) and monolingual summarization (MS), and thus there exists the hierarchical relationship between MT&MS and CLS. Existing studies on CLS mainly focus on utilizing pipeline methods or jointly training an end-to-end model through an auxiliary MT or MS objective. However, it is very challenging for the model to directly conduct CLS as it requires both the abilities to translate and summarize. To address this issue, we propose a hierarchical model for the CLS task, based on the conditional variational auto-encoder. The hierarchical model contains two kinds of latent variables at the local and global levels, respectively. At the local level, there are two latent variables, one for translation and the other for summarization. As for the global level, there is another latent variable for cross-lingual summarization conditioned on the two local-level variables. Experiments on two language directions (English-Chinese) verify the effectiveness and superiority of the proposed approach. In addition, we show that our model is able to generate better cross-lingual summaries than comparison models in the few-shot setting.

pdf bib
MSCTD: A Multimodal Sentiment Chat Translation Dataset
Yunlong Liang | Fandong Meng | Jinan Xu | Yufeng Chen | Jie Zhou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal machine translation and textual chat translation have received considerable attention in recent years. Although the conversation in its natural form is usually multimodal, there still lacks work on multimodal machine translation in conversations. In this work, we introduce a new task named Multimodal Chat Translation (MCT), aiming to generate more accurate translations with the help of the associated dialogue history and visual context. To this end, we firstly construct a Multimodal Sentiment Chat Translation Dataset (MSCTD) containing 142,871 English-Chinese utterance pairs in 14,762 bilingual dialogues. Each utterance pair, corresponding to the visual context that reflects the current conversational scene, is annotated with a sentiment label. Then, we benchmark the task by establishing multiple baseline systems that incorporate multimodal and sentiment features for MCT. Preliminary experiments on two language directions (English-Chinese) verify the potential of contextual and multimodal information fusion and the positive impact of sentiment on the MCT task. Additionally, we provide a new benchmark on multimodal dialogue sentiment analysis with the constructed MSCTD. Our work can facilitate researches on both multimodal chat translation and multimodal dialogue sentiment analysis.

pdf bib
Scheduled Multi-task Learning for Neural Chat Translation
Yunlong Liang | Fandong Meng | Jinan Xu | Yufeng Chen | Jie Zhou
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Neural Chat Translation (NCT) aims to translate conversational text into different languages. Existing methods mainly focus on modeling the bilingual dialogue characteristics (e.g., coherence) to improve chat translation via multi-task learning on small-scale chat translation data. Although the NCT models have achieved impressive success, it is still far from satisfactory due to insufficient chat translation data and simple joint training manners. To address the above issues, we propose a scheduled multi-task learning framework for NCT. Specifically, we devise a three-stage training framework to incorporate the large-scale in-domain chat translation data into training by adding a second pre-training stage between the original pre-training and fine-tuning stages. Further, we investigate where and how to schedule the dialogue-related auxiliary tasks in multiple training stages to effectively enhance the main chat translation task. Extensive experiments on four language directions (English-Chinese and English-German) verify the effectiveness and superiority of the proposed approach. Additionally, we will make the large-scale in-domain paired bilingual dialogue dataset publicly available for the research community.

pdf bib
BJTU-WeChat’s Systems for the WMT22 Chat Translation Task
Yunlong Liang | Fandong Meng | Jinan Xu | Yufeng Chen | Jie Zhou
Proceedings of the Seventh Conference on Machine Translation (WMT)

This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT’22 chat translation task for English-German. Based on the Transformer, we apply several effective variants. In our experiments, we apply the pre-training-then-fine-tuning paradigm. In the first pre-training stage, we employ data filtering and synthetic data generation (i.e., back-translation, forward-translation, and knowledge distillation). In the second fine-tuning stage, we investigate speaker-aware in-domain data generation, speaker adaptation, prompt-based context modeling, target denoising fine-tuning, and boosted self-COMET-based model ensemble. Our systems achieve 81.0 and 94.6 COMET scores on English-German and German-English, respectively. The COMET scores of English-German and German-English are the highest among all submissions.

pdf bib
A Survey on Cross-Lingual Summarization
Jiaan Wang | Fandong Meng | Duo Zheng | Yunlong Liang | Zhixu Li | Jianfeng Qu | Jie Zhou
Transactions of the Association for Computational Linguistics, Volume 10

Cross-lingual summarization is the task of generating a summary in one language (e.g., English) for the given document(s) in a different language (e.g., Chinese). Under the globalization background, this task has attracted increasing attention of the computational linguistics community. Nevertheless, there still remains a lack of comprehensive review for this task. Therefore, we present the first systematic critical review on the datasets, approaches, and challenges in this field. Specifically, we carefully organize existing datasets and approaches according to different construction methods and solution paradigms, respectively. For each type of dataset or approach, we thoroughly introduce and summarize previous efforts and further compare them with each other to provide deeper analyses. In the end, we also discuss promising directions and offer our thoughts to facilitate future research. This survey is for both beginners and experts in cross-lingual summarization, and we hope it will serve as a starting point as well as a source of new ideas for researchers and engineers interested in this area.

2021

pdf bib
Modeling Bilingual Conversational Characteristics for Neural Chat Translation
Yunlong Liang | Fandong Meng | Yufeng Chen | Jinan Xu | Jie Zhou
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Neural chat translation aims to translate bilingual conversational text, which has a broad application in international exchanges and cooperation. Despite the impressive performance of sentence-level and context-aware Neural Machine Translation (NMT), there still remain challenges to translate bilingual conversational text due to its inherent characteristics such as role preference, dialogue coherence, and translation consistency. In this paper, we aim to promote the translation quality of conversational text by modeling the above properties. Specifically, we design three latent variational modules to learn the distributions of bilingual conversational characteristics. Through sampling from these learned distributions, the latent variables, tailored for role preference, dialogue coherence, and translation consistency, are incorporated into the NMT model for better translation. We evaluate our approach on the benchmark dataset BConTrasT (English<->German) and a self-collected bilingual dialogue corpus, named BMELD (English<->Chinese). Extensive experiments show that our approach notably boosts the performance over strong baselines by a large margin and significantly surpasses some state-of-the-art context-aware NMT models in terms of BLEU and TER. Additionally, we make the BMELD dataset publicly available for the research community.

pdf bib
An Iterative Multi-Knowledge Transfer Network for Aspect-Based Sentiment Analysis
Yunlong Liang | Fandong Meng | Jinchao Zhang | Yufeng Chen | Jinan Xu | Jie Zhou
Findings of the Association for Computational Linguistics: EMNLP 2021

Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches do not well exploit the interactive relations among three subtasks and do not pertinently leverage the easily available document-level labeled domain/sentiment knowledge, which restricts their performances. To address these issues, we propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing, through the interactive correlations between the ABSA subtasks, our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm, that is, any two of the three subtasks will help the third one. For another, our IMKTN pertinently transfers the document-level knowledge, i.e., domain-specific and sentiment-related knowledge, to the aspect-level subtasks to further enhance the corresponding performance. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.

pdf bib
Towards Making the Most of Dialogue Characteristics for Neural Chat Translation
Yunlong Liang | Chulun Zhou | Fandong Meng | Jinan Xu | Yufeng Chen | Jinsong Su | Jie Zhou
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the enhanced NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English<->German and English<->Chinese) verify the effectiveness and superiority of the proposed approach.

2019

pdf bib
A Novel Aspect-Guided Deep Transition Model for Aspect Based Sentiment Analysis
Yunlong Liang | Fandong Meng | Jinchao Zhang | Jinan Xu | Yufeng Chen | Jie Zhou
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Aspect based sentiment analysis (ABSA) aims to identify the sentiment polarity towards the given aspect in a sentence, while previous models typically exploit an aspect-independent (weakly associative) encoder for sentence representation generation. In this paper, we propose a novel Aspect-Guided Deep Transition model, named AGDT, which utilizes the given aspect to guide the sentence encoding from scratch with the specially-designed deep transition architecture. Furthermore, an aspect-oriented objective is designed to enforce AGDT to reconstruct the given aspect with the generated sentence representation. In doing so, our AGDT can accurately generate aspect-specific sentence representation, and thus conduct more accurate sentiment predictions. Experimental results on multiple SemEval datasets demonstrate the effectiveness of our proposed approach, which significantly outperforms the best reported results with the same setting.