Yunlong Zhao


2024

pdf bib
Parameter-Efficient Transfer Learning for End-to-end Speech Translation
Yunlong Zhao | Kexin Wang | Qianqian Dong | Tom Ko
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Recently, end-to-end speech translation (ST) has gained significant attention in research, but its progress is hindered by the limited availability of labeled data. To overcome this challenge, leveraging pre-trained models for knowledge transfer in ST has emerged as a promising direction. In this paper, we propose PETL-ST, which investigates parameter-efficient transfer learning for end-to-end speech translation. Our method utilizes two lightweight adaptation techniques, namely prefix and adapter, to modulate Attention and the Feed-Forward Network, respectively, while preserving the capabilities of pre-trained models. We conduct experiments on MuST-C En-De, Es, Fr, Ru datasets to evaluate the performance of our approach. The results demonstrate that PETL-ST outperforms strong baselines, achieving superior translation quality with high parameter efficiency. Moreover, our method exhibits remarkable data efficiency and significantly improves performance in low-resource settings.

2023

pdf bib
MOSPC: MOS Prediction Based on Pairwise Comparison
Kexin Wang | Yunlong Zhao | Qianqian Dong | Tom Ko | Mingxuan Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

As a subjective metric to evaluate the quality of synthesized speech, Mean opinion score(MOS) usually requires multiple annotators to score the same speech. Such an annotation approach requires a lot of manpower and is also time-consuming. MOS prediction model for automatic evaluation can significantly reduce labor cost. In previous works, it is difficult to accurately rank the quality of speech when the MOS scores are close. However, in practical applications, it is more important to correctly rank the quality of synthesis systems or sentences than simply predicting MOS scores. Meanwhile, as each annotator scores multiple audios during annotation, the score is probably a relative value based on the first or the first few speech scores given by the annotator. Motivated by the above two points, we propose a general framework for MOS prediction based on pair comparison (MOSPC), and we utilize C-Mixup algorithm to enhance the generalization performance of MOSPC.The experiments on BVCC and VCC2018 show that our framework outperforms the baselines on most of the correlation coefficient metrics, especially on the metric KTAU related to quality ranking. And our framework also surpasses the strong baseline in ranking accuracy on each fine-grained segment. These results indicate that our framework contributes to improving the ranking accuracy of speech quality.