2024
pdf
bib
abs
Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent Detection
Pei Wang
|
Keqing He
|
Yejie Wang
|
Xiaoshuai Song
|
Yutao Mou
|
Jingang Wang
|
Yunsen Xian
|
Xunliang Cai
|
Weiran Xu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Out-of-domain (OOD) intent detection aims to examine whether the user’s query falls outside the predefined domain of the system, which is crucial for the proper functioning of task-oriented dialogue (TOD) systems. Previous methods address it by fine-tuning discriminative models. Recently, some studies have been exploring the application of large language models (LLMs) represented by ChatGPT to various downstream tasks, but it is still unclear for their ability on OOD detection task.This paper conducts a comprehensive evaluation of LLMs under various experimental settings, and then outline the strengths and weaknesses of LLMs. We find that LLMs exhibit strong zero-shot and few-shot capabilities, but is still at a disadvantage compared to models fine-tuned with full resource. More deeply, through a series of additional analysis experiments, we discuss and summarize the challenges faced by LLMs and provide guidance for future work including injecting domain knowledge, strengthening knowledge transfer from IND(In-domain) to OOD, and understanding long instructions.
pdf
bib
abs
Conjoin after Decompose: Improving Few-Shot Performance of Named Entity Recognition
Chengcheng Han
|
Renyu Zhu
|
Jun Kuang
|
Fengjiao Chen
|
Xiang Li
|
Ming Gao
|
Xuezhi Cao
|
Yunsen Xian
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Prompt-based methods have been widely used in few-shot named entity recognition (NER). In this paper, we first conduct a preliminary experiment and observe that the key to affecting the performance of prompt-based NER models is the capability to detect entity boundaries. However, most existing models fail to boost such capability. To solve the issue, we propose a novel model, ParaBART, which consists of a BART encoder and a specially designed parabiotic decoder. Specifically, the parabiotic decoder includes two BART decoders and a conjoint module. The two decoders are responsible for entity boundary detection and entity type classification, respectively. They are connected by the conjoint module, which is used to replace unimportant tokens’ embeddings in one decoder with the average embedding of all the tokens in the other. We further present a novel boundary expansion strategy to enhance the model’s capability in entity type classification. Experimental results show that ParaBART can achieve significant performance gains over state-of-the-art competitors.
pdf
bib
abs
A Wolf in Sheep’s Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily
Peng Ding
|
Jun Kuang
|
Dan Ma
|
Xuezhi Cao
|
Yunsen Xian
|
Jiajun Chen
|
Shujian Huang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Large Language Models (LLMs), such as ChatGPT and GPT-4, are designed to provide useful and safe responses. However, adversarial prompts known as ‘jailbreaks’ can circumvent safeguards, leading LLMs to generate potentially harmful content. Exploring jailbreak prompts can help to better reveal the weaknesses of LLMs and further steer us to secure them. Unfortunately, existing jailbreak methods either suffer from intricate manual design or require optimization on other white-box models, which compromises either generalization or efficiency. In this paper, we generalize jailbreak prompt attacks into two aspects: (1) Prompt Rewriting and (2) Scenario Nesting. Based on this, we propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts. Extensive experiments demonstrate that ReNeLLM significantly improves the attack success rate while greatly reducing the time cost compared to existing baselines. Our study also reveals the inadequacy of current defense methods in safeguarding LLMs. Finally, we analyze the failure of LLMs defense from the perspective of prompt execution priority, and propose corresponding defense strategies. We hope that our research can catalyze both the academic community and LLMs developers towards the provision of safer and more regulated LLMs. The code is available at https://github.com/NJUNLP/ReNeLLM.
2023
pdf
bib
abs
Lifting the Curse of Capacity Gap in Distilling Language Models
Chen Zhang
|
Yang Yang
|
Jiahao Liu
|
Jingang Wang
|
Yunsen Xian
|
Benyou Wang
|
Dawei Song
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Pretrained language models (LMs) have shown compelling performance on various downstream tasks, but unfortunately they require a tremendous amount of inference compute. Knowledge distillation finds a path to compress LMs to small ones with a teacher-student paradigm. However, when the capacity gap between the teacher and the student is large, a curse of capacity gap appears, invoking a deficiency in distilling LMs. While a few studies have been carried out to fill the gap, the curse is not yet well tackled. In this paper, we aim at lifting the curse of capacity gap via enlarging the capacity of the student without notably increasing the inference compute. Largely motivated by sparse activation regime of mixture of experts (MoE), we propose a mixture of minimal experts (MiniMoE), which imposes extra parameters to the student but introduces almost no additional inference compute. Experimental results on GLUE and CoNLL demonstrate the curse of capacity gap is lifted by the magic of MiniMoE to a large extent. MiniMoE also achieves the state-of-the-art performance at small FLOPs compared with a range of competitive baselines. With a compression rate as much as ~50×, MiniMoE preserves ~95% GLUE score of the teacher.
pdf
bib
abs
FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for Task-Oriented Dialogue
Weihao Zeng
|
Keqing He
|
Yejie Wang
|
Chen Zeng
|
Jingang Wang
|
Yunsen Xian
|
Weiran Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Pre-trained language models based on general text enable huge success in the NLP scenario. But the intrinsical difference of linguistic patterns between general text and task-oriented dialogues makes existing pre-trained language models less useful in practice. Current dialogue pre-training methods rely on a contrastive framework and face the challenges of both selecting true positives and hard negatives. In this paper, we propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context using a self-training framework. Our intuition is that a good dialogue representation both learns local context information and predicts future information. Extensive experiments on diverse downstream dialogue tasks demonstrate the effectiveness of our model, especially the generalization, robustness, and learning discriminative dialogue representations capabilities.
pdf
bib
abs
Decoupling Pseudo Label Disambiguation and Representation Learning for Generalized Intent Discovery
Yutao Mou
|
Xiaoshuai Song
|
Keqing He
|
Chen Zeng
|
Pei Wang
|
Jingang Wang
|
Yunsen Xian
|
Weiran Xu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Generalized intent discovery aims to extend a closed-set in-domain intent classifier to an open-world intent set including in-domain and out-of-domain intents. The key challenges lie in pseudo label disambiguation and representation learning. Previous methods suffer from a coupling of pseudo label disambiguation and representation learning, that is, the reliability of pseudo labels relies on representation learning, and representation learning is restricted by pseudo labels in turn. In this paper, we propose a decoupled prototype learning framework (DPL) to decouple pseudo label disambiguation and representation learning. Specifically, we firstly introduce prototypical contrastive representation learning (PCL) to get discriminative representations. And then we adopt a prototype-based label disambiguation method (PLD) to obtain pseudo labels. We theoretically prove that PCL and PLD work in a collaborative fashion and facilitate pseudo label disambiguation. Experiments and analysis on three benchmark datasets show the effectiveness of our method.
pdf
bib
abs
RankCSE: Unsupervised Sentence Representations Learning via Learning to Rank
Jiduan Liu
|
Jiahao Liu
|
Qifan Wang
|
Jingang Wang
|
Wei Wu
|
Yunsen Xian
|
Dongyan Zhao
|
Kai Chen
|
Rui Yan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Unsupervised sentence representation learning is one of the fundamental problems in natural language processing with various downstream applications. Recently, contrastive learning has been widely adopted which derives high-quality sentence representations by pulling similar semantics closer and pushing dissimilar ones away. However, these methods fail to capture the fine-grained ranking information among the sentences, where each sentence is only treated as either positive or negative. In many real-world scenarios, one needs to distinguish and rank the sentences based on their similarities to a query sentence, e.g., very relevant, moderate relevant, less relevant, irrelevant, etc. In this paper, we propose a novel approach, RankCSE, for unsupervised sentence representation learning, which incorporates ranking consistency and ranking distillation with contrastive learning into a unified framework. In particular, we learn semantically discriminative sentence representations by simultaneously ensuring ranking consistency between two representations with different dropout masks, and distilling listwise ranking knowledge from the teacher. An extensive set of experiments are conducted on both semantic textual similarity (STS) and transfer (TR) tasks. Experimental results demonstrate the superior performance of our approach over several state-of-the-art baselines.
pdf
bib
abs
Transferable and Efficient: Unifying Dynamic Multi-Domain Product Categorization
Shansan Gong
|
Zelin Zhou
|
Shuo Wang
|
Fengjiao Chen
|
Xiujie Song
|
Xuezhi Cao
|
Yunsen Xian
|
Kenny Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
As e-commerce platforms develop different business lines, a special but challenging product categorization scenario emerges, where there are multiple domain-specific category taxonomies and each of them evolves dynamically over time. In order to unify the categorization process and ensure efficiency, we propose a two-stage taxonomy-agnostic framework that relies solely on calculating the semantic relatedness between product titles and category names in the vector space. To further enhance domain transferability and better exploit cross-domain data, we design two plug-in modules: a heuristic mapping scorer and a pretrained contrastive ranking module with the help of meta concepts, which represent keyword knowledge shared across domains. Comprehensive offline experiments show that our method outperforms strong baselineson three dynamic multi-domain product categorization (DMPC) tasks,and online experiments reconfirm its efficacy with a5% increase on seasonal purchase revenue. Related datasets will be released.
pdf
bib
abs
Large Language Models Meet Open-World Intent Discovery and Recognition: An Evaluation of ChatGPT
Xiaoshuai Song
|
Keqing He
|
Pei Wang
|
Guanting Dong
|
Yutao Mou
|
Jingang Wang
|
Yunsen Xian
|
Xunliang Cai
|
Weiran Xu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
The tasks of out-of-domain (OOD) intent discovery and generalized intent discovery (GID) aim to extend a closed intent classifier to open-world intent sets, which is crucial to task-oriented dialogue (TOD) systems. Previous methods address them by fine-tuning discriminative models. Recently, although some studies has been exploring the application of large language models (LLMs) represented by ChatGPT to various downstream tasks, it is still unclear for the ability of ChatGPT to discover and incrementally extent OOD intents. In this paper, we comprehensively evaluate ChatGPT on OOD intent discovery and GID, and then outline the strengths and weaknesses of ChatGPT. Overall, ChatGPT exhibits consistent advantages under zero-shot settings, but is still at a disadvantage compared to fine-tuned models. More deeply, through a series of analytical experiments, we summarize and discuss the challenges faced by LLMs including clustering, domain-specific understanding, and cross-domain in-context learning scenarios. Finally, we provide empirical guidance for future directions to address these challenges.
pdf
bib
abs
Fusion or Defusion? Flexible Vision-and-Language Pre-Training
Rongyi Sun
|
Ziran Li
|
Yifeng Ding
|
Qifan Wang
|
Jingang Wang
|
Haitao Zheng
|
Wei Wu
|
Yunsen Xian
Findings of the Association for Computational Linguistics: ACL 2023
Existing approaches in the vision-and-language pre-training (VLP) paradigm mainly deploy either fusion-based encoders or dual-encoders, failing to achieve both effectiveness and efficiency in downstream multimodal tasks. In this paper, we build a flexible VLP model by incorporating cross-modal fusions into a dual-encoder architecture, where the introduced fusion modules can be easily decoupled from the dual encoder so as to switch the model to a fusion-free one. To better absorb cross-modal features from the fusion modules, we design a cross-modal knowledge transfer strategy along with other comprehensive pre-training tasks to guide the training process, which can further strengthen both the fusion-based and fusion-free representation learning. Extensive experiments conducted on various downstream vision-language tasks show that our proposed model is well-equipped with effectiveness as well as efficiency, demonstrating a superior performance compared with other strong VLP models.
pdf
bib
abs
PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language Models
Zhuocheng Gong
|
Jiahao Liu
|
Qifan Wang
|
Yang Yang
|
Jingang Wang
|
Wei Wu
|
Yunsen Xian
|
Dongyan Zhao
|
Rui Yan
Findings of the Association for Computational Linguistics: ACL 2023
While transformer-based pre-trained language models (PLMs) have dominated a number of NLP applications, these models are heavy to deploy and expensive to use. Therefore, effectively compressing large-scale PLMs becomes an increasingly important problem. Quantization, which represents high-precision tensors with low-bit fix-point format, is a viable solution. However, most existing quantization methods are task-specific, requiring customized training and quantization with a large number of trainable parameters on each individual task. Inspired by the observation that the over-parameterization nature of PLMs makes it possible to freeze most of the parameters during the fine-tuning stage, in this work, we propose a novel “quantize before fine-tuning” framework, PreQuant, that differs from both quantization-aware training and post-training quantization. {pasted macro ‘OUR’} is compatible with various quantization strategies, with outlier-aware parameter-efficient fine-tuning incorporated to correct the induced quantization error. We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5. We also provide an empirical investigation into the workflow of PreQuant, which sheds light on its efficacy.
pdf
bib
abs
Pay Attention to Implicit Attribute Values: A Multi-modal Generative Framework for AVE Task
Yupeng Zhang
|
Shensi Wang
|
Peiguang Li
|
Guanting Dong
|
Sirui Wang
|
Yunsen Xian
|
Zhoujun Li
|
Hongzhi Zhang
Findings of the Association for Computational Linguistics: ACL 2023
Attribute Value Extraction (AVE) boosts many e-commerce platform services such as targeted recommendation, product retrieval and question answering. Most previous studies adopt an extractive framework such as named entity recognition (NER) to capture subtokens in the product descriptions as the corresponding values of target attributes. However, in the real world scenario, there also exist implicit attribute values that are not mentioned explicitly but embedded in the image information and implied text meaning of products, for which the power of extractive methods is severely constrained. To address the above issues, we exploit a unified multi-modal AVE framework named DEFLATE (a multi-modal unifieD framEwork For impLicit And expliciT AVE) to acquire implicit attribute values in addition to the explicit ones. DEFLATE consists of a QA-based generation model to produce candidate attribute values from the product information of different modalities, and a discriminative model to ensure the credibility of the generated answers. Meanwhile, to provide a testbed that close to the real world, we collect and annotate a multi-modal dataset with parts of implicit attribute values. Extensive experiments conducted on multiple datasets demonstrate that DEFLATE significantly outperforms previous methods on the extraction of implicit attribute values, while achieving comparable performance for the explicit ones.
pdf
bib
abs
APP: Adaptive Prototypical Pseudo-Labeling for Few-shot OOD Detection
Pei Wang
|
Keqing He
|
Yutao Mou
|
Xiaoshuai Song
|
Yanan Wu
|
Jingang Wang
|
Yunsen Xian
|
Xunliang Cai
|
Weiran Xu
Findings of the Association for Computational Linguistics: EMNLP 2023
Detecting out-of-domain (OOD) intents from user queries is essential for a task-oriented dialogue system. Previous OOD detection studies generally work on the assumption that plenty of labeled IND intents exist. In this paper, we focus on a more practical few-shot OOD setting where there are only a few labeled IND data and massive unlabeled mixed data that may belong to IND or OOD. The new scenario carries two key challenges: learning discriminative representations using limited IND data and leveraging unlabeled mixed data. Therefore, we propose an adaptive prototypical pseudo-labeling(APP) method for few-shot OOD detection, including a prototypical OOD detection framework (ProtoOOD) to facilitate low-resourceOOD detection using limited IND data, and an adaptive pseudo-labeling method to produce high-quality pseudo OOD and IND labels. Extensive experiments and analysis demonstrate the effectiveness of our method for few-shot OOD detection.