Yunsoo Kim


2024

pdf bib
MedExQA: Medical Question Answering Benchmark with Multiple Explanations
Yunsoo Kim | Jinge Wu | Yusuf Abdulle | Honghan Wu
Proceedings of the 23rd Workshop on Biomedical Natural Language Processing

This paper introduces MedExQA, a novel benchmark in medical question-answering, to evaluate large language models’ (LLMs) understanding of medical knowledge through explanations. By constructing datasets across five distinct medical specialties that are underrepresented in current datasets and further incorporating multiple explanations for each question-answer pair, we address a major gap in current medical QA benchmarks which is the absence of comprehensive assessments of LLMs’ ability to generate nuanced medical explanations. Our work highlights the importance of explainability in medical LLMs, proposes an effective methodology for evaluating models beyond classification accuracy, and sheds light on one specific domain, speech language pathology, where current LLMs including GPT4 lack good understanding. Our results show generation evaluation with multiple explanations aligns better with human assessment, highlighting an opportunity for a more robust automated comprehension assessment for LLMs. To diversify open-source medical LLMs (currently mostly based on Llama2), this work also proposes a new medical model, MedPhi-2, based on Phi-2 (2.7B). The model outperformed medical LLMs based on Llama2-70B in generating explanations, showing its effectiveness in the resource-constrained medical domain. We will share our benchmark datasets and the trained model.

pdf bib
KnowLab_AIMed at MEDIQA-CORR 2024: Chain-of-Though (CoT) prompting strategies for medical error detection and correction
Zhaolong Wu | Abul Hasan | Jinge Wu | Yunsoo Kim | Jason Cheung | Teng Zhang | Honghan Wu
Proceedings of the 6th Clinical Natural Language Processing Workshop

This paper describes our submission to the MEDIQA-CORR 2024 shared task for automatically detecting and correcting medical errors in clinical notes. We report results for three methods of few-shot In-Context Learning (ICL) augmented with Chain-of-Thought (CoT) and reason prompts using a large language model (LLM). In the first method, we manually analyse a subset of train and validation dataset to infer three CoT prompts by examining error types in the clinical notes. In the second method, we utilise the training dataset to prompt the LLM to deduce reasons about their correctness or incorrectness. The constructed CoTs and reasons are then augmented with ICL examples to solve the tasks of error detection, span identification, and error correction. Finally, we combine the two methods using a rule-based ensemble method. Across the three sub-tasks, our ensemble method achieves a ranking of 3rd for both sub-task 1 and 2, while securing 7th place in sub-task 3 among all submissions.

pdf bib
Knowlab’s Submission to L+M Shared Task: All you need is continued pretraining of chemistry texts even for molecule captioning
Yunsoo Kim | Honghan Wu
Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)

This paper presents our submission to the L+M-24 shared task, focused on translating molecular structures into natural language descriptions, known as the molecule captioning task. We selected a small language model (SLM), Phi-3-mini-4k, to evaluate the impact of continued pretraining and instruction tuning for domain-specific chemical knowledge. The Phi-3 model was continued pretrained with 90M chemistry textbooks and abstracts, followed by instruction tuning on 150K question answering sets of SMILES and general chemistry knowledge. Despite the continued pretraining phase not including direct exposure to SMILES representations, it significantly enhanced the Phi-3 model’s performance, a 300% increase for the BLEU scores, in the molecule captioning task. The code and model are released at https://github.com/bluesky333/Phi3KnowChem to facilitate research in chemical small language modeling.

2023

pdf bib
Chemical Language Understanding Benchmark
Yunsoo Kim | Hyuk Ko | Jane Lee | Hyun Young Heo | Jinyoung Yang | Sungsoo Lee | Kyu-hwang Lee
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)

In this paper, we introduce the benchmark datasets named CLUB (Chemical Language Understanding Benchmark) to facilitate NLP research in the chemical industry. We have 4 datasets consisted of text and token classification tasks. As far as we have recognized, it is one of the first examples of chemical language understanding benchmark datasets consisted of tasks for both patent and literature articles provided by industrial organization. All the datasets are internally made by chemists from scratch. Finally, we evaluate the datasets on the various language models based on BERT and RoBERTa, and demonstrate the model performs better when the domain of the pretrained models are closer to chemistry domain. We provide baselines for our benchmark as 0.8054 in average, and we hope this benchmark is used by many researchers in both industry and academia.