Small Language Models (SLMs) are attracting attention due to the high computational demands and privacy concerns of Large Language Models (LLMs). Some studies fine-tune SLMs using Chains of Thought (CoT) data distilled from LLMs, aiming to enhance their reasoning ability. Furthermore, Some CoT distillation methods introduce external symbolic knowledge into the generation process to improve the limited knowledge memory, reasoning ability and out-of-domain (OOD) generalization of SLMs. However, the introduction of symbolic knowledge increases computational overhead and introduces potential noise. In this paper, we introduce SKIntern, an innovative approach that empowers SLMs to internalize symbolic knowledge and few-shot examples gradually through a progressive fine-tuning process, guided by a predefined linear decay schedule under curriculum learning. By efficiently internalizing knowledge, SKIntern reduces computational overhead and speeds up the reasoning process by focusing solely on the question during inference. It outperforms state-of-the-art baselines by over 5%, while reducing inference costs (measured in FLOPs) by up to 4× across a wide range of SLMs in both in-domain (ID) and out-of-domain (OOD) tasks. Our code will be available at https://github.com/Xnhyacinth/SKIntern.
Traditional event detection methods require predefined event schemas. However, manually defining event schemas is expensive and the coverage of schemas is limited. To this end, some works study the event type induction (ETI) task, which discovers new event types via clustering. However, the setting of ETI suffers from two limitations: event types are not linked into the existing hierarchy and have no semantic names. In this paper, we propose a new research task named Event Ontology Completion (EOC), which aims to simultaneously achieve event clustering, hierarchy expansion and type naming. Furthermore, we develop a Hierarchical Structure Evolution Network (HalTon) for this new task. Specifically, we first devise a Neighborhood Contrastive Clustering module to cluster unlabeled event instances. Then, we propose a Hierarchy-Aware Linking module to incorporate the hierarchical information for event expansion. Finally, we generate meaningful names for new types via an In-Context Learning-based Naming module. Extensive experiments indicate that our method achieves the best performance, outperforming the baselines by 8.23%, 8.79% and 8.10% of ARI score on three datasets.
The concept of a complex event schema pertains to the graph structure that represents real-world knowledge of events and their multi-dimensional relationships. However, previous studies on event schema induction have been hindered by challenges such as error propagation and data quality issues. To tackle these challenges, we propose a knowledge-enriched discrete diffusion model. Specifically, we distill the abundant event scenario knowledge of Large Language Models (LLMs) through an object-oriented Python style prompt. We incorporate this knowledge into the training data, enhancing its quality. Subsequently, we employ a discrete diffusion process to generate all nodes and links simultaneously in a non-auto-regressive manner to tackle the problem of error propagation. Additionally, we devise an entity relationship prediction module to complete entity relationships between event arguments. Experimental results demonstrate that our approach achieves outstanding performance across a range of evaluation metrics.