Yury Zemlyanskiy


2022

pdf bib
Generate-and-Retrieve: Use Your Predictions to Improve Retrieval for Semantic Parsing
Yury Zemlyanskiy | Michiel de Jong | Joshua Ainslie | Panupong Pasupat | Peter Shaw | Linlu Qiu | Sumit Sanghai | Fei Sha
Proceedings of the 29th International Conference on Computational Linguistics

A common recent approach to semantic parsing augments sequence-to-sequence models by retrieving and appending a set of training samples, called exemplars. The effectiveness of this recipe is limited by the ability to retrieve informative exemplars that help produce the correct parse, which is especially challenging in low-resource settings. Existing retrieval is commonly based on similarity of query and exemplar inputs. We propose GandR, a retrieval procedure that retrieves exemplars for which outputs are also similar. GandR first generates a preliminary prediction with input-based retrieval. Then, it retrieves exemplars with outputs similar to the preliminary prediction which are used to generate a final prediction. GandR sets the state of the art on multiple low-resource semantic parsing tasks.

2021

pdf bib
DOCENT: Learning Self-Supervised Entity Representations from Large Document Collections
Yury Zemlyanskiy | Sudeep Gandhe | Ruining He | Bhargav Kanagal | Anirudh Ravula | Juraj Gottweis | Fei Sha | Ilya Eckstein
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

This paper explores learning rich self-supervised entity representations from large amounts of associated text. Once pre-trained, these models become applicable to multiple entity-centric tasks such as ranked retrieval, knowledge base completion, question answering, and more. Unlike other methods that harvest self-supervision signals based merely on a local context within a sentence, we radically expand the notion of context to include any available text related to an entity. This enables a new class of powerful, high-capacity representations that can ultimately distill much of the useful information about an entity from multiple text sources, without any human supervision. We present several training strategies that, unlike prior approaches, learn to jointly predict words and entities – strategies we compare experimentally on downstream tasks in the TV-Movies domain, such as MovieLens tag prediction from user reviews and natural language movie search. As evidenced by results, our models match or outperform competitive baselines, sometimes with little or no fine-tuning, and are also able to scale to very large corpora. Finally, we make our datasets and pre-trained models publicly available. This includes Reviews2Movielens, mapping the ~1B word corpus of Amazon movie reviews (He and McAuley, 2016) to MovieLens tags (Harper and Konstan, 2016), as well as Reddit Movie Suggestions with natural language queries and corresponding community recommendations.

pdf bib
ReadTwice: Reading Very Large Documents with Memories
Yury Zemlyanskiy | Joshua Ainslie | Michiel de Jong | Philip Pham | Ilya Eckstein | Fei Sha
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Knowledge-intensive tasks such as question answering often require assimilating information from different sections of large inputs such as books or article collections. We propose ReadTwice, a simple and effective technique that combines several strengths of prior approaches to model long-range dependencies with Transformers. The main idea is to read text in small segments, in parallel, summarizing each segment into a memory table to be used in a second read of the text. We show that the method outperforms models of comparable size on several question answering (QA) datasets and sets a new state of the art on the challenging NarrativeQA task, with questions about entire books.

2019

pdf bib
Self-Attentive, Multi-Context One-Class Classification for Unsupervised Anomaly Detection on Text
Lukas Ruff | Yury Zemlyanskiy | Robert Vandermeulen | Thomas Schnake | Marius Kloft
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

There exist few text-specific methods for unsupervised anomaly detection, and for those that do exist, none utilize pre-trained models for distributed vector representations of words. In this paper we introduce a new anomaly detection method—Context Vector Data Description (CVDD)—which builds upon word embedding models to learn multiple sentence representations that capture multiple semantic contexts via the self-attention mechanism. Modeling multiple contexts enables us to perform contextual anomaly detection of sentences and phrases with respect to the multiple themes and concepts present in an unlabeled text corpus. These contexts in combination with the self-attention weights make our method highly interpretable. We demonstrate the effectiveness of CVDD quantitatively as well as qualitatively on the well-known Reuters, 20 Newsgroups, and IMDB Movie Reviews datasets.

2018

pdf bib
Aiming to Know You Better Perhaps Makes Me a More Engaging Dialogue Partner
Yury Zemlyanskiy | Fei Sha
Proceedings of the 22nd Conference on Computational Natural Language Learning

There have been several attempts to define a plausible motivation for a chit-chat dialogue agent that can lead to engaging conversations. In this work, we explore a new direction where the agent specifically focuses on discovering information about its interlocutor. We formalize this approach by defining a quantitative metric. We propose an algorithm for the agent to maximize it. We validate the idea with human evaluation where our system outperforms various baselines. We demonstrate that the metric indeed correlates with the human judgments of engagingness.