Yusheng Su


2024

pdf bib
Beyond Natural Language: LLMs Leveraging Alternative Formats for Enhanced Reasoning and Communication
Weize Chen | Chenfei Yuan | Jiarui Yuan | Yusheng Su | Chen Qian | Cheng Yang | Ruobing Xie | Zhiyuan Liu | Maosong Sun
Findings of the Association for Computational Linguistics: EMNLP 2024

Natural language (NL) has long been the predominant format for human cognition and communication, and by extension, has been similarly pivotal in the development and application of Large Language Models (LLMs). Yet, besides NL, LLMs have seen various non-NL formats during pre-training, such as code and logical expression. NL’s status as the optimal format for LLMs, particularly in single-LLM reasoning and multi-agent communication, has not been thoroughly examined. In this work, we challenge the default use of NL by exploring the utility of non-NL formats in these contexts. We show that allowing LLMs to autonomously select the most suitable format before reasoning or communicating leads to a 3.3 to 5.7% improvement in reasoning efficiency for different LLMs, and up to a 72.7% reduction in token usage in multi-agent communication, all while maintaining communicative effectiveness. Our comprehensive analysis further reveals that LLMs can devise a format from limited task instructions and that the devised format is effectively transferable across different LLMs. Intriguingly, the structured communication format decided by LLMs exhibits notable parallels with established agent communication languages, suggesting a natural evolution towards efficient, structured communication in agent communication. Our code will be released to facilitate further exploration.

pdf bib
ChatDev: Communicative Agents for Software Development
Chen Qian | Wei Liu | Hongzhang Liu | Nuo Chen | Yufan Dang | Jiahao Li | Cheng Yang | Weize Chen | Yusheng Su | Xin Cong | Juyuan Xu | Dahai Li | Zhiyuan Liu | Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Software development is a complex task that necessitates cooperation among multiple members with diverse skills. Numerous studies used deep learning to improve specific phases in a waterfall model, such as design, coding, and testing. However, the deep learning model in each phase requires unique designs, leading to technical inconsistencies across various phases, which results in a fragmented and ineffective development process. In this paper, we introduce ChatDev, a chat-powered software development framework in which specialized agents driven by large language models (LLMs) are guided in what to communicate (via chat chain) and how to communicate (via communicative dehallucination). These agents actively contribute to the design, coding, and testing phases through unified language-based communication, with solutions derived from their multi-turn dialogues. We found their utilization of natural language is advantageous for system design, and communicating in programming language proves helpful in debugging. This paradigm demonstrates how linguistic communication facilitates multi-agent collaboration, establishing language as a unifying bridge for autonomous task-solving among LLM agents. The code and data are available at https://github.com/OpenBMB/ChatDev.

2023

pdf bib
Exploring the Impact of Model Scaling on Parameter-Efficient Tuning
Yusheng Su | Chi-Min Chan | Jiali Cheng | Yujia Qin | Yankai Lin | Shengding Hu | Zonghan Yang | Ning Ding | Xingzhi Sun | Guotong Xie | Zhiyuan Liu | Maosong Sun
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Parameter-efficient tuning (PET) methods can effectively drive extremely large pre-trained language models (PLMs) by training only minimal parameters. Different PET methods utilize different manually designed tunable modules. In small PLMs, there are usually noticeable performance differences among PET methods. Nevertheless, as the model scale increases, the performance differences become marginal. Hence, we hypothesize that model scaling mitigates the impact of design differences on PET methods. To investigate this hypothesis, we introduce a more flexible PET method called Arbitrary PET (APET) method. The APET method is compatible with a tunable module, which consists of any number of parameters distributed in arbitrary positions. Then, we utilize it and conduct experiments on 11 NLP tasks across 3 representative PLMs. Our investigations reveal that model scaling (1) mitigates the effects of the positions of tunable parameters on performance, and (2) enables tuning methods to achieve performance comparable to full-parameter fine-tuning by optimizing fewer tunable parameters. Intriguingly, we also observe that tuning methods optimize the similar number of tunable parameters to exceed random guess performance on different tasks. We collectively discuss this phenomenon and the two aforementioned findings from an optimization perspective to understand the underlying mechanisms. These conclusions enhance our understanding of the impact of model scaling on PET and assist in designing more effective and efficient PET methods for PLMs of different scales. The source code can be obtained from this GitHub repository: https://github.com/yushengsu-thu/PET_Scaling.

2022

pdf bib
Knowledge Inheritance for Pre-trained Language Models
Yujia Qin | Yankai Lin | Jing Yi | Jiajie Zhang | Xu Han | Zhengyan Zhang | Yusheng Su | Zhiyuan Liu | Peng Li | Maosong Sun | Jie Zhou
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent explorations of large-scale pre-trained language models (PLMs) have revealed the power of PLMs with huge amounts of parameters, setting off a wave of training ever-larger PLMs. However, it requires tremendous computational resources to train a large-scale PLM, which may be practically unaffordable. In addition, existing large-scale PLMs are mainly trained from scratch individually, ignoring that many well-trained PLMs are available. To this end, we explore the question how could existing PLMs benefit training large-scale PLMs in future. Specifically, we introduce a pre-training framework named “knowledge inheritance” (KI) and explore how could knowledge distillation serve as auxiliary supervision during pre-training to efficiently learn larger PLMs. Experimental results demonstrate the superiority of KI in training efficiency. We also conduct empirical analyses to explore the effects of teacher PLMs’ pre-training settings, including model architecture, pre-training data, etc. Finally, we show that KI could be applied to domain adaptation and knowledge transfer.

pdf bib
On Transferability of Prompt Tuning for Natural Language Processing
Yusheng Su | Xiaozhi Wang | Yujia Qin | Chi-Min Chan | Yankai Lin | Huadong Wang | Kaiyue Wen | Zhiyuan Liu | Peng Li | Juanzi Li | Lei Hou | Maosong Sun | Jie Zhou
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Prompt tuning (PT) is a promising parameter-efficient method to utilize extremely large pre-trained language models (PLMs), which can achieve comparable performance to full-parameter fine-tuning by only tuning a few soft prompts. However, PT requires much more training time than fine-tuning. Intuitively, knowledge transfer can help to improve the efficiency. To explore whether we can improve PT via prompt transfer, we empirically investigate the transferability of soft prompts across different downstream tasks and PLMs in this work. We find that (1) in zero-shot setting, trained soft prompts can effectively transfer to similar tasks on the same PLM and also to other PLMs with a cross-model projector trained on similar tasks; (2) when used as initialization, trained soft prompts of similar tasks and projected prompts of other PLMs can significantly accelerate training and also improve the performance of PT. Moreover, to explore what decides prompt transferability, we investigate various transferability indicators and find that the overlapping rate of activated neurons strongly reflects the transferability, which suggests how the prompts stimulate PLMs is essential. Our findings show that prompt transfer is promising for improving PT, and further research shall focus more on prompts’ stimulation to PLMs. The source code can be obtained from https://github.com/thunlp/Prompt-Transferability.