2024
pdf
bib
abs
MAGID: An Automated Pipeline for Generating Synthetic Multi-modal Datasets
Hossein Aboutalebi
|
Hwanjun Song
|
Yusheng Xie
|
Arshit Gupta
|
Lijia Sun
|
Hang Su
|
Igor Shalyminov
|
Nikolaos Pappas
|
Siffi Singh
|
Saab Mansour
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Development of multimodal interactive systems is hindered by the lack of rich, multimodal (text, images) conversational data, which is needed in large quantities for LLMs. Previous approaches augment textual dialogues with retrieved images, posing privacy, diversity, and quality constraints. In this work, we introduce Multimodal Augmented Generative Images Dialogues (MAGID), a framework to augment text-only dialogues with diverse and high-quality images . Subsequently, a diffusion model is applied to craft corresponding images, ensuring alignment with the identified text. Finally, MAGID incorporates an innovative feedback loop between an image description generation module (textual LLM) and image quality modules (addressing aesthetics, image-text matching, and safety), that work in tandem to generate high-quality and multi-modal dialogues. We compare MAGID to other SOTA baselines on three dialogue datasets, using automated and human evaluation. Our results show that MAGID is comparable to or better than baselines, with significant improvements in human evaluation, especially against retrieval baselines where the image database is small.
pdf
bib
abs
Multiple-Question Multiple-Answer Text-VQA
Peng Tang
|
Srikar Appalaraju
|
R. Manmatha
|
Yusheng Xie
|
Vijay Mahadevan
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)
We present Multiple-Question Multiple-Answer (MQMA), a novel approach to do text-VQA in encoder-decoder transformer models. To the best of our knowledge, almost all previous approaches for text-VQA process a single question and its associated content to predict a single answer. However, in industry applications, users may come up with multiple questions about a single image. In order to answer multiple questions from the same image, each question and content are fed into the model multiple times. In contrast, our proposed MQMA approach takes multiple questions and content as input at the encoder and predicts multiple answers at the decoder in an auto-regressive manner at the same time. We make several novel architectural modifications to standard encoder-decoder transformers to support MQMA. We also propose a novel MQMA denoising pre-training task which is designed to teach the model to align and delineate multiple questions and content with associated answers. MQMA pre-trained model achieves state-of-the-art results on multiple text-VQA datasets, each with strong baselines. Specifically, on OCR-VQA (+2.5%), TextVQA (+1.4%), ST-VQA (+0.6%), DocVQA (+1.1%) absolute improvements over the previous state-of-the-art approaches.
2015
pdf
bib
Reducing infrequent-token perplexity via variational corpora
Yusheng Xie
|
Pranjal Daga
|
Yu Cheng
|
Kunpeng Zhang
|
Ankit Agrawal
|
Alok Choudhary
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)