Legal Argument-Pair Extraction (LAE) is dedicated to the identification of interactive arguments targeting the same subject matter within legal complaints and corresponding defenses. This process serves as a foundation for automatically recognizing the focal points of disputes. Current methodologies predominantly conceptualize LAE as a supervised sentence-pair classification problem and usually necessitate extensive manual annotations, thereby constraining their scalability and general applicability. To this end, we present an innovative approach to LAE that focuses on fine-grained alignment of argument pairs, building upon coarse-grained complaint-defense pairs. This strategy stems from two key observations: 1) In general, every argument presented in a legal complaint is likely to be addressed by at least one corresponding argument in the defense. 2) It’s rare for multiple complaint arguments to be addressed by a single defense argument; rather, each complaint argument usually corresponds to a unique defense argument. Motivated by these insights, we develop a specialized pre-training framework. Our model employs pre-training objectives designed to exploit the coarse-grained supervision signals. This enables expressive representations of legal arguments for LAE, even when working with a limited amount of labeled data. To verify the effectiveness of our model, we construct the largest LAE datasets from two representative causes, private lending, and contract dispute. The experimental results demonstrate that our model can effectively capture informative argument knowledge from unlabeled complaint-defense pairs and outperform the unsupervised and supervised baselines by 3.7 and 2.4 points on average respectively. Besides, our model can reach superior accuracy with only half manually annotated data. The datasets and code can be found in https://github.com/thunlp/LAE.
Position modeling plays a critical role in Transformers. In this paper, we focus on length extrapolation, i.e., training on short texts while evaluating longer sequences. We define
attention resolution as an indicator of extrapolation. Then we propose two designs to improve the above metric of Transformers. Specifically, we introduce a relative position embedding to explicitly maximize attention resolution. Moreover, we use blockwise causal attention during inference for better resolution. We evaluate different Transformer variants with language modeling. Experimental results show that our model achieves strong performance in both interpolation and extrapolation settings. The code will be available at
https://aka.ms/LeX-Transformer.
Large pretrained language models have shown surprising in-context learning (ICL) ability. With a few demonstration input-label pairs, they can predict the label for an unseen input without parameter updates. Despite the great success in performance, its working mechanism still remains an open question. In this paper, we explain language models as meta-optimizers and understand in-context learning as implicit finetuning. Theoretically, we figure out that Transformer attention has a dual form of gradient descent. On top of it, we understand ICL as follows: GPT first produces meta-gradients according to the demonstration examples, and then these meta-gradients are applied to the original GPT to build an ICL model. We comprehensively compare the behaviors of in-context learning and explicit finetuning on real tasks to provide empirical evidence that supports our understanding. Experimental results show that in-context learning behaves similarly to explicit finetuning from multiple perspectives. Inspired by the dual form between Transformer attention and gradient descent, we design a momentum-based attention by analogy with gradient descent with momentum. The improved performance over vanilla attention further supports our understanding from another perspective, and more importantly, shows the potential to utilize our understanding for future model design. The code is available at
https://aka.ms/icl.