Yuval Kirstain


2022

pdf bib
A Few More Examples May Be Worth Billions of Parameters
Yuval Kirstain | Patrick Lewis | Sebastian Riedel | Omer Levy
Findings of the Association for Computational Linguistics: EMNLP 2022

We investigate the dynamics of increasing the number of model parameters versus the number of labeled examples across a wide variety of tasks. Our exploration reveals that while scaling parameters consistently yields performance improvements, the contribution of additional examples highly depends on the task’s format. Specifically, in open question answering tasks, enlarging the training set does not improve performance. In contrast, classification, extractive question answering, and multiple choice tasks benefit so much from additional examples that collecting a few hundred examples is often “worth” billions of parameters. We hypothesize that unlike open question answering, which involves recalling specific information, solving strategies for tasks with a more restricted output space transfer across examples, and can therefore be learned with small amounts of labeled data.

2021

pdf bib
Few-Shot Question Answering by Pretraining Span Selection
Ori Ram | Yuval Kirstain | Jonathan Berant | Amir Globerson | Omer Levy
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In several question answering benchmarks, pretrained models have reached human parity through fine-tuning on an order of 100,000 annotated questions and answers. We explore the more realistic few-shot setting, where only a few hundred training examples are available, and observe that standard models perform poorly, highlighting the discrepancy between current pretraining objectives and question answering. We propose a new pretraining scheme tailored for question answering: recurring span selection. Given a passage with multiple sets of recurring spans, we mask in each set all recurring spans but one, and ask the model to select the correct span in the passage for each masked span. Masked spans are replaced with a special token, viewed as a question representation, that is later used during fine-tuning to select the answer span. The resulting model obtains surprisingly good results on multiple benchmarks (e.g., 72.7 F1 on SQuAD with only 128 training examples), while maintaining competitive performance in the high-resource setting.

pdf bib
Coreference Resolution without Span Representations
Yuval Kirstain | Ori Ram | Omer Levy
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

The introduction of pretrained language models has reduced many complex task-specific NLP models to simple lightweight layers. An exception to this trend is coreference resolution, where a sophisticated task-specific model is appended to a pretrained transformer encoder. While highly effective, the model has a very large memory footprint – primarily due to dynamically-constructed span and span-pair representations – which hinders the processing of complete documents and the ability to train on multiple instances in a single batch. We introduce a lightweight end-to-end coreference model that removes the dependency on span representations, handcrafted features, and heuristics. Our model performs competitively with the current standard model, while being simpler and more efficient.