Yuwei Zhang


2024

pdf bib
Answer is All You Need: Instruction-following Text Embedding via Answering the Question
Letian Peng | Yuwei Zhang | Zilong Wang | Jayanth Srinivasa | Gaowen Liu | Zihan Wang | Jingbo Shang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

This work aims to build a text embedder that can capture characteristics of texts specified by user instructions clarifying the similarity criterion. While previous methods improve general task awareness by injecting the instruction information into encoding, they fail to be sensitive to clearer criteria like “evaluate similarity based on emotion”. We instead propose a different viewpoint, which treats the instruction as a “question” about the input text and encodes the expected answers to obtain the representation accordingly. Intuitively, texts with the same (implicit) semantics would share similar answers following the instruction, thus leading to more similar representations. Specifically, we propose InBedder that instantiates this learning-to-answer idea by only fine-tuning language models via abstractive question answering tasks. Despite its simplicity, InBedder demonstrates significantly improved instruction-following capabilities according to our proposed instruction awareness tests and instruction robustness tests, when applied to language models with large language models (LLMs) (e.g., llama-2-7b) and smaller encoder-based LMs (e.g., roberta-large). Additionally, our qualitative analysis of clustering outcomes, achieved by applying diverse instructions to the same unlabeled corpus, demonstrates a high degree of interpretability in the clusters formed.

pdf bib
Can Your Model Tell a Negation from an Implicature? Unravelling Challenges With Intent Encoders
Yuwei Zhang | Siffi Singh | Sailik Sengupta | Igor Shalyminov | Hang Su | Hwanjun Song | Saab Mansour
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conversational systems often rely on embedding models for intent classification and intent clustering tasks. The advent of Large Language Models (LLMs), which enable instructional embeddings allowing one to adjust semantics over the embedding space using prompts, are being viewed as a panacea for these downstream conversational tasks. However, traditional evaluation benchmarks rely solely on task metrics that don’t particularly measure gaps related to semantic understanding. Thus, we propose an intent semantic toolkit that gives a more holistic view of intent embedding models by considering three tasks– (1) intent classification, (2) intent clustering, and (3) a novel triplet task. The triplet task gauges the model’s understanding of two semantic concepts paramount in real-world conversational systems– negation and implicature. We observe that current embedding models fare poorly in semantic understanding of these concepts. To address this, we propose a pre-training approach to improve the embedding model by leveraging augmentation with data generated by an auto-regressive model and a contrastive loss term. Our approach improves the semantic understanding of the intent embedding model on the aforementioned linguistic dimensions while slightly effecting their performance on downstream task metrics.

pdf bib
Controllable Data Augmentation for Few-Shot Text Mining with Chain-of-Thought Attribute Manipulation
Letian Peng | Yuwei Zhang | Jingbo Shang
Findings of the Association for Computational Linguistics: ACL 2024

Prompting large language models (LLMs) for data augmentation has recently become a common practice in few-shot NLP tasks. In this paper, we propose Chain-of-Thought Attribute Manipulation (CoTAM), a novel approach that generates new data from existing examples by only tweaking in the user-provided, task-specific attribute, e.g., sentiment polarity or topic in movie reviews. Instead of conventional latent representation controlling, we leverage the chain-of-thought prompting to directly edit the text in three steps, (1) attribute decomposition, (2) manipulation proposal, and (3) sentence reconstruction. Extensive results on various tasks, such as text (pair) classification and aspect-based sentiment analysis, verify the superiority of CoTAM over other LLM-based augmentation methods with the same number of training examples for both fine-tuning and in-context learning. Remarkably, the 2D visualization of the augmented dataset using principle component analysis revealed a human-recognizable decision boundary that is likely hinted by the attribute manipulation, demonstrating the potential of our proposed approach.

2023

pdf bib
ClusterLLM: Large Language Models as a Guide for Text Clustering
Yuwei Zhang | Zihan Wang | Jingbo Shang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

We introduce ClusterLLM, a novel text clustering framework that leverages feedback from an instruction-tuned large language model, such as ChatGPT. Compared with traditional unsupervised methods that builds upon “small” embedders, ClusterLLM exhibits two intriguing advantages: (1) it enjoys the emergent capability of LLM even if its embeddings are inaccessible; and (2) it understands the user’s preference on clustering through textual instruction and/or a few annotated data. First, we prompt ChatGPT for insights on clustering perspective by constructing hard triplet questions <does A better correspond to B than C>, where A, B and C are similar data points that belong to different clusters according to small embedder. We empirically show that this strategy is both effective for fine-tuning small embedder and cost-efficient to query ChatGPT. Second, we prompt ChatGPT for helps on clustering granularity by carefully designed pairwise questions <do A and B belong to the same category>, and tune the granularity from cluster hierarchies that is the most consistent with the ChatGPT answers. Extensive experiments on 14 datasets show that ClusterLLM consistently improves clustering quality, at an average cost of ~$0.6 per dataset.

2022

pdf bib
New Intent Discovery with Pre-training and Contrastive Learning
Yuwei Zhang | Haode Zhang | Li-Ming Zhan | Xiao-Ming Wu | Albert Lam
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

New intent discovery aims to uncover novel intent categories from user utterances to expand the set of supported intent classes. It is a critical task for the development and service expansion of a practical dialogue system. Despite its importance, this problem remains under-explored in the literature. Existing approaches typically rely on a large amount of labeled utterances and employ pseudo-labeling methods for representation learning and clustering, which are label-intensive, inefficient, and inaccurate. In this paper, we provide new solutions to two important research questions for new intent discovery: (1) how to learn semantic utterance representations and (2) how to better cluster utterances. Particularly, we first propose a multi-task pre-training strategy to leverage rich unlabeled data along with external labeled data for representation learning. Then, we design a new contrastive loss to exploit self-supervisory signals in unlabeled data for clustering. Extensive experiments on three intent recognition benchmarks demonstrate the high effectiveness of our proposed method, which outperforms state-of-the-art methods by a large margin in both unsupervised and semi-supervised scenarios. The source code will be available at https://github.com/zhang-yu-wei/MTP-CLNN.

pdf bib
Fine-tuning Pre-trained Language Models for Few-shot Intent Detection: Supervised Pre-training and Isotropization
Haode Zhang | Haowen Liang | Yuwei Zhang | Liming Zhan | Xiaolei Lu | Albert Lam | Xiao-Ming Wu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

It is challenging to train a good intent classifier for a task-oriented dialogue system with only a few annotations. Recent studies have shown that fine-tuning pre-trained language models with a small set of labeled utterances from public benchmarks in a supervised manner is extremely helpful. However, we find that supervised pre-training yields an anisotropic feature space, which may suppress the expressive power of the semantic representations. Inspired by recent research in isotropization, we propose to improve supervised pre-training by regularizing the feature space towards isotropy. We propose two regularizers based on contrastive learning and correlation matrix respectively, and demonstrate their effectiveness through extensive experiments. Our main finding is that it is promising to regularize supervised pre-training with isotropization to further improve the performance of few-shot intent detection. The source code can be found at https://github.com/fanolabs/isoIntentBert-main.

2021

pdf bib
Effectiveness of Pre-training for Few-shot Intent Classification
Haode Zhang | Yuwei Zhang | Li-Ming Zhan | Jiaxin Chen | Guangyuan Shi | Albert Y.S. Lam | Xiao-Ming Wu
Findings of the Association for Computational Linguistics: EMNLP 2021

This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and efficient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model – IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.