Yuxi Qian


pdf bib
Prompts Can Play Lottery Tickets Well: Achieving Lifelong Information Extraction via Lottery Prompt Tuning
Zujie Liang | Feng Wei | Yin Jie | Yuxi Qian | Zhenghong Hao | Bing Han
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Thanks to the recent success of Pre-trained Language Models (PLMs), it has become a promising research direction to develop a universal model (UIE) that can solve all typical information extraction tasks within one generative framework. Nonetheless, in real-world scenarios of UIE applications, new data of different IE tasks and domains usually come in a stream over time. A desirable UIE system should be capable of continually learning new tasks without forgetting old ones, thereby allowing knowledge and functionalities expansion without re-training the whole system. In this paper, we study the UIE system under a more challenging yet practical scenario, i.e., “lifelong learning” settings, to evaluate its abilities in three aspects, including knowledge sharing and expansion, catastrophic forgetting prevention, and rapid generalization on few-shot and unseen tasks. To achieve these three goals, we present a novel parameter- and deployment-efficient prompt tuning method namely Lottery Prompt Tuning (LPT).LPT freezes the PLM’s parameters and sequentially learns compact pruned prompt vectors for each task leveraging a binary prompt mask, while keeping the prompt parameters selected by the previous tasks insusceptible. Furthermore, we use a simple yet effective method to perform mask selection and show the powerful transferability of Lottery Prompts to novel tasks. Extensive experiments demonstrate that LPT consistently sets state-of-the-art performance on multiple lifelong learning settings of UIE, including task-incremental setting on seen tasks, few-shot adaptation, and zero-shot generalization on novel tasks.


pdf bib
Co-VQA : Answering by Interactive Sub Question Sequence
Ruonan Wang | Yuxi Qian | Fangxiang Feng | Xiaojie Wang | Huixing Jiang
Findings of the Association for Computational Linguistics: ACL 2022

Most existing approaches to Visual Question Answering (VQA) answer questions directly, however, people usually decompose a complex question into a sequence of simple sub questions and finally obtain the answer to the original question after answering the sub question sequence(SQS). By simulating the process, this paper proposes a conversation-based VQA (Co-VQA) framework, which consists of three components: Questioner, Oracle, and Answerer. Questioner raises the sub questions using an extending HRED model, and Oracle answers them one-by-one. An Adaptive Chain Visual Reasoning Model (ACVRM) for Answerer is also proposed, where the question-answer pair is used to update the visual representation sequentially. To perform supervised learning for each model, we introduce a well-designed method to build a SQS for each question on VQA 2.0 and VQA-CP v2 datasets. Experimental results show that our method achieves state-of-the-art on VQA-CP v2. Further analyses show that SQSs help build direct semantic connections between questions and images, provide question-adaptive variable-length reasoning chains, and with explicit interpretability as well as error traceability.