Yuxiang Wu


2022

pdf bib
Generating Data to Mitigate Spurious Correlations in Natural Language Inference Datasets
Yuxiang Wu | Matt Gardner | Pontus Stenetorp | Pradeep Dasigi
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language processing models often exploit spurious correlations between task-independent features and labels in datasets to perform well only within the distributions they are trained on, while not generalising to different task distributions. We propose to tackle this problem by generating a debiased version of a dataset, which can then be used to train a debiased, off-the-shelf model, by simply replacing its training data. Our approach consists of 1) a method for training data generators to generate high-quality, label-consistent data samples; and 2) a filtering mechanism for removing data points that contribute to spurious correlations, measured in terms of z-statistics. We generate debiased versions of the SNLI and MNLI datasets, and we evaluate on a large suite of debiased, out-of-distribution, and adversarial test sets. Results show that models trained on our debiased datasets generalise better than those trained on the original datasets in all settings. On the majority of the datasets, our method outperforms or performs comparably to previous state-of-the-art debiasing strategies, and when combined with an orthogonal technique, product-of-experts, it improves further and outperforms previous best results of SNLI-hard and MNLI-hard.

2021

pdf bib
PAQ: 65 Million Probably-Asked Questions and What You Can Do With Them
Patrick Lewis | Yuxiang Wu | Linqing Liu | Pasquale Minervini | Heinrich Küttler | Aleksandra Piktus | Pontus Stenetorp | Sebastian Riedel
Transactions of the Association for Computational Linguistics, Volume 9

Abstract Open-domain Question Answering models that directly leverage question-answer (QA) pairs, such as closed-book QA (CBQA) models and QA-pair retrievers, show promise in terms of speed and memory compared with conventional models which retrieve and read from text corpora. QA-pair retrievers also offer interpretable answers, a high degree of control, and are trivial to update at test time with new knowledge. However, these models fall short of the accuracy of retrieve-and-read systems, as substantially less knowledge is covered by the available QA-pairs relative to text corpora like Wikipedia. To facilitate improved QA-pair models, we introduce Probably Asked Questions (PAQ), a very large resource of 65M automatically generated QA-pairs. We introduce a new QA-pair retriever, RePAQ, to complement PAQ. We find that PAQ preempts and caches test questions, enabling RePAQ to match the accuracy of recent retrieve-and-read models, whilst being significantly faster. Using PAQ, we train CBQA models which outperform comparable baselines by 5%, but trail RePAQ by over 15%, indicating the effectiveness of explicit retrieval. RePAQ can be configured for size (under 500MB) or speed (over 1K questions per second) while retaining high accuracy. Lastly, we demonstrate RePAQ’s strength at selective QA, abstaining from answering when it is likely to be incorrect. This enables RePAQ to “back-off” to a more expensive state-of-the-art model, leading to a combined system which is both more accurate and 2x faster than the state-of-the-art model alone.

pdf bib
Training Adaptive Computation for Open-Domain Question Answering with Computational Constraints
Yuxiang Wu | Pasquale Minervini | Pontus Stenetorp | Sebastian Riedel
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Adaptive Computation (AC) has been shown to be effective in improving the efficiency of Open-Domain Question Answering (ODQA) systems. However, the current AC approaches require tuning of all model parameters, and training state-of-the-art ODQA models requires significant computational resources that may not be available for most researchers. We propose Adaptive Passage Encoder, an AC method that can be applied to an existing ODQA model and can be trained efficiently on a single GPU. It keeps the parameters of the base ODQA model fixed, but it overrides the default layer-by-layer computation of the encoder with an AC policy that is trained to optimise the computational efficiency of the model. Our experimental results show that our method improves upon a state-of-the-art model on two datasets, and is also more accurate than previous AC methods due to the stronger base ODQA model. All source code and datasets are available at https://github.com/uclnlp/APE.

2020

pdf bib
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu | Pasquale Minervini | Pontus Stenetorp | Sebastian Riedel
Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing

Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of an early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.

pdf bib
Don’t Read Too Much Into It: Adaptive Computation for Open-Domain Question Answering
Yuxiang Wu | Sebastian Riedel | Pasquale Minervini | Pontus Stenetorp
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Most approaches to Open-Domain Question Answering consist of a light-weight retriever that selects a set of candidate passages, and a computationally expensive reader that examines the passages to identify the correct answer. Previous works have shown that as the number of retrieved passages increases, so does the performance of the reader. However, they assume all retrieved passages are of equal importance and allocate the same amount of computation to them, leading to a substantial increase in computational cost. To reduce this cost, we propose the use of adaptive computation to control the computational budget allocated for the passages to be read. We first introduce a technique operating on individual passages in isolation which relies on anytime prediction and a per-layer estimation of early exit probability. We then introduce SKYLINEBUILDER, an approach for dynamically deciding on which passage to allocate computation at each step, based on a resource allocation policy trained via reinforcement learning. Our results on SQuAD-Open show that adaptive computation with global prioritisation improves over several strong static and adaptive methods, leading to a 4.3x reduction in computation while retaining 95% performance of the full model.

2019

pdf bib
Language Models as Knowledge Bases?
Fabio Petroni | Tim Rocktäschel | Sebastian Riedel | Patrick Lewis | Anton Bakhtin | Yuxiang Wu | Alexander Miller
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent progress in pretraining language models on large textual corpora led to a surge of improvements for downstream NLP tasks. Whilst learning linguistic knowledge, these models may also be storing relational knowledge present in the training data, and may be able to answer queries structured as “fill-in-the-blank” cloze statements. Language models have many advantages over structured knowledge bases: they require no schema engineering, allow practitioners to query about an open class of relations, are easy to extend to more data, and require no human supervision to train. We present an in-depth analysis of the relational knowledge already present (without fine-tuning) in a wide range of state-of-the-art pretrained language models. We find that (i) without fine-tuning, BERT contains relational knowledge competitive with traditional NLP methods that have some access to oracle knowledge, (ii) BERT also does remarkably well on open-domain question answering against a supervised baseline, and (iii) certain types of factual knowledge are learned much more readily than others by standard language model pretraining approaches. The surprisingly strong ability of these models to recall factual knowledge without any fine-tuning demonstrates their potential as unsupervised open-domain QA systems. The code to reproduce our analysis is available at https://github.com/facebookresearch/LAMA.