Yuxin Ren


2025

pdf bib
FIER: Fine-Grained and Efficient KV Cache Retrieval for Long-context LLM Inference
Dongwei Wang | Zijie Liu | Song Wang | Yuxin Ren | Jianing Deng | Jingtong Hu | Tianlong Chen | Huanrui Yang
Findings of the Association for Computational Linguistics: EMNLP 2025

The Key-Value (KV) cache reading latency increases significantly with context lengths, hindering the efficiency of long-context LLM inference. To address this, previous works propose retaining a small fraction of KV cache based on token importance. For example, KV eviction uses static heuristics to retain tokens, while KV retrieval dynamically selects query-relevant tokens for more adaptive cache management. However, we observe that important tokens are often sparsely distributed across the long context. This sparsity makes existing page-level KV retrieval inaccurate, as each page may include irrelevant tokens and miss critical ones. In this work, we propose Fier, a **Fi**ne-Grained and **E**fficient KV cache **R**etrieval method. Fier uses 1-bit quantized keys to estimate the importance of each token, resulting in efficient and precise retrieval. Experiments show that Fier matches full KV performance using only 11% of the cache budget across various long-context tasks, reducing decoding latency by 1.2× to 1.5×.

2023

pdf bib
Tailoring Instructions to Student’s Learning Levels Boosts Knowledge Distillation
Yuxin Ren | Zihan Zhong | Xingjian Shi | Yi Zhu | Chun Yuan | Mu Li
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

It has been commonly observed that a teacher model with superior performance does not necessarily result in a stronger student, highlighting a discrepancy between current teacher training practices and effective knowledge transfer. In order to enhance the guidance of the teacher training process, we introduce the concept of distillation influence to determine the impact of distillation from each training sample on the student’s generalization ability. In this paper, we propose Learning Good Teacher Matters (LGTM), an efficient training technique for incorporating distillation influence into the teacher’s learning process. By prioritizing samples that are likely to enhance the student’s generalization ability, our LGTM outperforms 10 common knowledge distillation baselines on 6 text classification tasks in the GLUE benchmark.