Yuxuan Lai


pdf bib
Event Transition Planning for Open-ended Text Generation
Qintong Li | Piji Li | Wei Bi | Zhaochun Ren | Yuxuan Lai | Lingpeng Kong
Findings of the Association for Computational Linguistics: ACL 2022

Open-ended text generation tasks, such as dialogue generation and story completion, require models to generate a coherent continuation given limited preceding context. The open-ended nature of these tasks brings new challenges to the neural auto-regressive text generators nowadays. Despite these neural models are good at producing human-like text, it is difficult for them to arrange causalities and relations between given facts and possible ensuing events. To bridge this gap, we propose a novel two-stage method which explicitly arranges the ensuing events in open-ended text generation. Our approach can be understood as a specially-trained coarse-to-fine algorithm, where an event transition planner provides a “coarse” plot skeleton and a text generator in the second stage refines the skeleton. Experiments on two open-ended text generation tasks demonstrate that our proposed method effectively improves the quality of the generated text, especially in coherence and diversity. We will release the codes to the community for further exploration.

pdf bib
Dual-Channel Evidence Fusion for Fact Verification over Texts and Tables
Nan Hu | Zirui Wu | Yuxuan Lai | Xiao Liu | Yansong Feng
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Different from previous fact extraction and verification tasks that only consider evidence of a single format, FEVEROUS brings further challenges by extending the evidence format to both plain text and tables. Existing works convert all candidate evidence into either sentences or tables, thus often failing to fully capture the rich context in their original format from the converted evidence, let alone the context information lost during conversion. In this paper, we propose a Dual Channel Unified Format fact verification model (DCUF), which unifies various evidence into parallel streams, i.e., natural language sentences and a global evidence table, simultaneously. With carefully-designed evidence conversion and organization methods, DCUF makes the most of pre-trained table/language models to encourage each evidence piece to perform early and thorough interactions with other pieces in its original format. Experiments show that our model can make better use of existing pre-trained models to absorb evidence of two formats, thus outperforming previous works by a large margin. Our code and models are publicly available.


pdf bib
Why Machine Reading Comprehension Models Learn Shortcuts?
Yuxuan Lai | Chen Zhang | Yansong Feng | Quzhe Huang | Dongyan Zhao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Extract, Integrate, Compete: Towards Verification Style Reading Comprehension
Chen Zhang | Yuxuan Lai | Yansong Feng | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2021

In this paper, we present a new verification style reading comprehension dataset named VGaokao from Chinese Language tests of Gaokao. Different from existing efforts, the new dataset is originally designed for native speakers’ evaluation, thus requiring more advanced language understanding skills. To address the challenges in VGaokao, we propose a novel Extract-Integrate-Compete approach, which iteratively selects complementary evidence with a novel query updating mechanism and adaptively distills supportive evidence, followed by a pairwise competition to push models to learn the subtle difference among similar text pieces. Experiments show that our methods outperform various baselines on VGaokao with retrieved complementary evidence, while having the merits of efficiency and explainability. Our dataset and code are released for further research.

pdf bib
Three Sentences Are All You Need: Local Path Enhanced Document Relation Extraction
Quzhe Huang | Shengqi Zhu | Yansong Feng | Yuan Ye | Yuxuan Lai | Dongyan Zhao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Document-level Relation Extraction (RE) is a more challenging task than sentence RE as it often requires reasoning over multiple sentences. Yet, human annotators usually use a small number of sentences to identify the relationship between a given entity pair. In this paper, we present an embarrassingly simple but effective method to heuristically select evidence sentences for document-level RE, which can be easily combined with BiLSTM to achieve good performance on benchmark datasets, even better than fancy graph neural network based methods. We have released our code at https://github.com/AndrewZhe/Three-Sentences-Are-All-You-Need.

pdf bib
Lattice-BERT: Leveraging Multi-Granularity Representations in Chinese Pre-trained Language Models
Yuxuan Lai | Yijia Liu | Yansong Feng | Songfang Huang | Dongyan Zhao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Chinese pre-trained language models usually process text as a sequence of characters, while ignoring more coarse granularity, e.g., words. In this work, we propose a novel pre-training paradigm for Chinese — Lattice-BERT, which explicitly incorporates word representations along with characters, thus can model a sentence in a multi-granularity manner. Specifically, we construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers. We design a lattice position attention mechanism to exploit the lattice structures in self-attention layers. We further propose a masked segment prediction task to push the model to learn from rich but redundant information inherent in lattices, while avoiding learning unexpected tricks. Experiments on 11 Chinese natural language understanding tasks show that our model can bring an average increase of 1.5% under the 12-layer setting, which achieves new state-of-the-art among base-size models on the CLUE benchmarks. Further analysis shows that Lattice-BERT can harness the lattice structures, and the improvement comes from the exploration of redundant information and multi-granularity representations. Our code will be available at https://github.com/alibaba/pretrained-language-models/LatticeBERT.


pdf bib
Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering
Kun Xu | Yuxuan Lai | Yansong Feng | Zhiguo Wang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Traditional Key-value Memory Neural Networks (KV-MemNNs) are proved to be effective to support shallow reasoning over a collection of documents in domain specific Question Answering or Reading Comprehension tasks. However, extending KV-MemNNs to Knowledge Based Question Answering (KB-QA) is not trivia, which should properly decompose a complex question into a sequence of queries against the memory, and update the query representations to support multi-hop reasoning over the memory. In this paper, we propose a novel mechanism to enable conventional KV-MemNNs models to perform interpretable reasoning for complex questions. To achieve this, we design a new query updating strategy to mask previously-addressed memory information from the query representations, and introduce a novel STOP strategy to avoid invalid or repeated memory reading without strong annotation signals. This also enables KV-MemNNs to produce structured queries and work in a semantic parsing fashion. Experimental results on benchmark datasets show that our solution, trained with question-answer pairs only, can provide conventional KV-MemNNs models with better reasoning abilities on complex questions, and achieve state-of-art performances.


pdf bib
Modeling discourse cohesion for discourse parsing via memory network
Yanyan Jia | Yuan Ye | Yansong Feng | Yuxuan Lai | Rui Yan | Dongyan Zhao
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Identifying long-span dependencies between discourse units is crucial to improve discourse parsing performance. Most existing approaches design sophisticated features or exploit various off-the-shelf tools, but achieve little success. In this paper, we propose a new transition-based discourse parser that makes use of memory networks to take discourse cohesion into account. The automatically captured discourse cohesion benefits discourse parsing, especially for long span scenarios. Experiments on the RST discourse treebank show that our method outperforms traditional featured based methods, and the memory based discourse cohesion can improve the overall parsing performance significantly.