It is still a pipe dream that personal AI assistants on the phone and AR glasses can assist our daily life in addressing our questions like “how to adjust the date for this watch?” and “how to set its heating duration? (while pointing at an oven)”. The queries used in conventional tasks (i.e. Video Question Answering, Video Retrieval, Moment Localization) are often factoid and based on pure text. In contrast, we present a new task called Task-oriented Question-driven Video Segment Retrieval (TQVSR). Each of our questions is an image-box-text query that focuses on affordance of items in our daily life and expects relevant answer segments to be retrieved from a corpus of instructional video-transcript segments. To support the study of this TQVSR task, we construct a new dataset called AssistSR. We design novel guidelines to create high-quality samples. This dataset contains 3.2k multimodal questions on 1.6k video segments from instructional videos on diverse daily-used items. To address TQVSR, we develop a simple yet effective model called Dual Multimodal Encoders (DME) that significantly outperforms several baseline methods while still having large room for improvement in the future. Moreover, we present detailed ablation analyses. Code and data are available at https://github.com/StanLei52/TQVSR.
We study video-grounded dialogue generation, where a response is generated based on the dialogue context and the associated video. The primary challenges of this task lie in (1) the difficulty of integrating video data into pre-trained language models (PLMs) which presents obstacles to exploiting the power of large-scale pre-training; and (2) the necessity of taking into account the complementarity of various modalities throughout the reasoning process. Although having made remarkable progress in video-grounded dialogue generation, existing methods still fall short when it comes to integrating with PLMs in a way that allows information from different modalities to complement each other. To alleviate these issues, we first propose extracting pertinent information from videos and turning it into reasoning paths that are acceptable to PLMs. Additionally, we propose a multi-agent reinforcement learning method to collaboratively perform reasoning on different modalities (i.e., video and dialogue context). Empirical experiment results on two public datasets indicate that the proposed model can significantly outperform state-of-the-art models by large margins on both automatic and human evaluations.
Annotation conversion is an effective way to construct datasets under new annotation guidelines based on existing datasets with little human labour. Previous work has been limited in conversion between tree-structured datasets and mainly focused on feature-based models which are not easily applicable to new conversions. In this paper, we propose two simple and effective graph-to-graph annotation conversion approaches, namely Label Switching and Graph2Graph Linear Transformation, which use pseudo data and inherit parameters to guide graph conversions respectively. These methods are able to deal with conversion between graph-structured annotations and require no manually designed features. To verify their effectiveness, we manually construct a graph-structured parallel annotated dataset and evaluate the proposed approaches on it as well as other existing parallel annotated datasets. Experimental results show that the proposed approaches outperform strong baselines with higher conversion score. To further validate the quality of converted graphs, we utilize them to train the target parser and find graphs generated by our approaches lead to higher parsing score than those generated by the baselines.
This paper proposes the building of Xiaomingbot, an intelligent, multilingual and multimodal software robot equipped with four inte- gral capabilities: news generation, news translation, news reading and avatar animation. Its system summarizes Chinese news that it automatically generates from data tables. Next, it translates the summary or the full article into multiple languages, and reads the multi- lingual rendition through synthesized speech. Notably, Xiaomingbot utilizes a voice cloning technology to synthesize the speech trained from a real person’s voice data in one input language. The proposed system enjoys several merits: it has an animated avatar, and is able to generate and read multilingual news. Since it was put into practice, Xiaomingbot has written over 600,000 articles, and gained over 150,000 followers on social media platforms.
This paper investigates the problem of learning cross-lingual representations in a contextual space. We propose Cross-Lingual BERT Transformation (CLBT), a simple and efficient approach to generate cross-lingual contextualized word embeddings based on publicly available pre-trained BERT models (Devlin et al., 2018). In this approach, a linear transformation is learned from contextual word alignments to align the contextualized embeddings independently trained in different languages. We demonstrate the effectiveness of this approach on zero-shot cross-lingual transfer parsing. Experiments show that our embeddings substantially outperform the previous state-of-the-art that uses static embeddings. We further compare our approach with XLM (Lample and Conneau, 2019), a recently proposed cross-lingual language model trained with massive parallel data, and achieve highly competitive results.
This paper describes our system (HIT-SCIR) for CoNLL 2019 shared task: Cross-Framework Meaning Representation Parsing. We extended the basic transition-based parser with two improvements: a) Efficient Training by realizing Stack LSTM parallel training; b) Effective Encoding via adopting deep contextualized word embeddings BERT. Generally, we proposed a unified pipeline to meaning representation parsing, including framework-specific transition-based parsers, BERT-enhanced word representation, and post-processing. In the final evaluation, our system was ranked first according to ALL-F1 (86.2%) and especially ranked first in UCCA framework (81.67%).
This paper describes our system (HIT-SCIR) submitted to the CoNLL 2018 shared task on Multilingual Parsing from Raw Text to Universal Dependencies. We base our submission on Stanford’s winning system for the CoNLL 2017 shared task and make two effective extensions: 1) incorporating deep contextualized word embeddings into both the part of speech tagger and parser; 2) ensembling parsers trained with different initialization. We also explore different ways of concatenating treebanks for further improvements. Experimental results on the development data show the effectiveness of our methods. In the final evaluation, our system was ranked first according to LAS (75.84%) and outperformed the other systems by a large margin.
This paper describes our system (HIT-SCIR) for the CoNLL 2017 shared task: Multilingual Parsing from Raw Text to Universal Dependencies. Our system includes three pipelined components: tokenization, Part-of-Speech (POS) tagging and dependency parsing. We use character-based bidirectional long short-term memory (LSTM) networks for both tokenization and POS tagging. Afterwards, we employ a list-based transition-based algorithm for general non-projective parsing and present an improved Stack-LSTM-based architecture for representing each transition state and making predictions. Furthermore, to parse low/zero-resource languages and cross-domain data, we use a model transfer approach to make effective use of existing resources. We demonstrate substantial gains against the UDPipe baseline, with an average improvement of 3.76% in LAS of all languages. And finally, we rank the 4th place on the official test sets.