Yuxuan Zhou


pdf bib
THiFLY Research at SemEval-2023 Task 7: A Multi-granularity System for CTR-based Textual Entailment and Evidence Retrieval
Yuxuan Zhou | Ziyu Jin | Meiwei Li | Miao Li | Xien Liu | Xinxin You | Ji Wu
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

The NLI4CT task aims to entail hypotheses based on Clinical Trial Reports (CTRs) and retrieve the corresponding evidence supporting the justification. This task poses a significant challenge, as verifying hypotheses in the NLI4CT task requires the integration of multiple pieces of evidence from one or two CTR(s) and the application of diverse levels of reasoning, including textual and numerical. To address these problems, we present a multi-granularity system for CTR-based textual entailment and evidence retrieval in this paper. Specifically, we construct a Multi-granularity Inference Network (MGNet) that exploits sentence-level and token-level encoding to handle both textual entailment and evidence retrieval tasks. Moreover, we enhance the numerical inference capability of the system by leveraging a T5-based model, SciFive, which is pre-trained on the medical corpus. Model ensembling and a joint inference method are further utilized in the system to increase the stability and consistency of inference. The system achieves f1-scores of 0.856 and 0.853 on textual entailment and evidence retrieval tasks, resulting in the best performance on both subtasks. The experimental results corroborate the effectiveness of our proposed method.


pdf bib
Table-based Fact Verification with Self-adaptive Mixture of Experts
Yuxuan Zhou | Xien Liu | Kaiyin Zhou | Ji Wu
Findings of the Association for Computational Linguistics: ACL 2022

The table-based fact verification task has recently gained widespread attention and yet remains to be a very challenging problem. It inherently requires informative reasoning over natural language together with different numerical and logical reasoning on tables (e.g., count, superlative, comparative). Considering that, we exploit mixture-of-experts and present in this paper a new method: Self-adaptive Mixture-of-Experts Network (SaMoE). Specifically, we have developed a mixture-of-experts neural network to recognize and execute different types of reasoning—the network is composed of multiple experts, each handling a specific part of the semantics for reasoning, whereas a management module is applied to decide the contribution of each expert network to the verification result. A self-adaptive method is developed to teach the management module combining results of different experts more efficiently without external knowledge. The experimental results illustrate that our framework achieves 85.1% accuracy on the benchmark dataset TabFact, comparable with the previous state-of-the-art models. We hope our framework can serve as a new baseline for table-based verification. Our code is available at https://github.com/THUMLP/SaMoE.


pdf bib
THiFly_Queens at SemEval-2021 Task 9: Two-stage Statement Verification with Adaptive Ensembling and Slot-based Operation
Yuxuan Zhou | Kaiyin Zhou | Xien Liu | Ji Wu | Xiaodan Zhu
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper describes our system for verifying statements with tables at SemEval-2021 Task 9. We developed a two-stage verifying system based on the latest table-based pre-trained model GraPPa. Multiple networks are devised to verify different types of statements in the competition dataset and an adaptive model ensembling technique is applied to ensemble models in both stages. A statement-slot-based symbolic operation module is also used in our system to further improve the performance and stability of the system. Our model achieves second place in the 3-way classification and fourth place in the 2-way classification evaluation. Several ablation experiments show the effectiveness of different modules proposed in this paper.