The aim of this workshop is to bring together experts working on open-domain dialogue research. In this speedily advancing research area many challenges still exist, such as learning information from conversations, engaging in realistic and convincing simulation of human intelligence and reasoning. SCI-CHAT follows previous workshops on open domain dialogue but with a focus on the simulation of intelligent conversation as judged in a live human evaluation. Models aim to include the ability to follow a challenging topic over a multi-turn conversation, while positing, refuting and reasoning over arguments. The workshop included both a research track and shared task. The main goal of this paper is to provide an overview of the shared task and a link to an additional paper that will include an in depth analysis of the shared task results following presentation at the workshop.
This paper is the model description for the Emo-Gen BART dialogue generation architecture, as submitted to the SCI-CHAT 2024 Shared Task. The Emotion-Informed Dialogue Generation model is a multi-task BARTbased model which performs dimensional and categorical emotion detection and uses that information to augment the input to the generation models. Our implementation is trained and validated against the IEMOCAP dataset, and compared against contemporary architectures in both dialogue emotion classification and dialogue generation. We show that certain loss function ablations are competitive against the state-of-the-art single-task models.
This system paper describes our conversational AI agent developed for the SCI-CHAT competition. The goal is to build automated dialogue agents that can have natural, coherent conversations with humans over multiple turns. Our model is based on fine-tuning the Snorkel-Mistral-PairRM-DPO language model on podcast conversation transcripts. This allows the model to leverage Snorkel-Mistral-PairRMDPO’s linguistic knowledge while adapting it for multi-turn dialogue modeling using LoRA. During evaluation, human judges will converse with the agent on specified topics and provide ratings on response quality. Our system aims to demonstrate how large pretrained language models, when properly adapted and evaluated, can effectively converse on open-ended topics spanning multiple turns.
Parameter-efficient fine-tuning (PEFT) is widely studied for its effectiveness and efficiency in the era of large language models. Low-rank adaptation (LoRA) has demonstrated commendable performance as a popular and representative method. However, it is implemented with a fixed intrinsic rank that might not be the ideal setting for the downstream tasks. Recognizing the need for more flexible downstream task adaptation, we extend the methodology of LoRA to an innovative approach we call allocating low-rank adaptation (ALoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process. First, we propose a novel method, AB-LoRA, that can effectively estimate the importance score of each LoRA rank. Second, guided by AB-LoRA, we gradually prune abundant and negatively impacting LoRA ranks and allocate the pruned LoRA budgets to important Transformer modules needing higher ranks. We have conducted experiments on various tasks, and the experimental results demonstrate that our ALoRA method can outperform the recent baselines with comparable tunable parameters.
Event-Level Video Question Answering (EVQA) requires complex reasoning across video events to obtain the visual information needed to provide optimal answers. However, despite significant progress in model performance, few studies have focused on using the explicit semantic connections between the question and visual information especially at the event level. There is need for using such semantic connections to facilitate complex reasoning across video frames. Therefore, we propose a semantic-aware dynamic retrospective-prospective reasoning approach for video-based question answering. Specifically, we explicitly use the Semantic Role Labeling (SRL) structure of the question in the dynamic reasoning process where we decide to move to the next frame based on which part of the SRL structure (agent, verb, patient, etc.) of the question is being focused on. We conduct experiments on a benchmark EVQA dataset - TrafficQA. Results show that our proposed approach achieves superior performance compared to previous state-of-the-art models. Our code is publicly available at https://github.com/lyuchenyang/Semantic-aware-VideoQA.
User and product information associated with a review is useful for sentiment polarity prediction. Typical approaches incorporating such information focus on modeling users and products as implicitly learned representation vectors. Most do not exploit the potential of historical reviews, or those that currently do require unnecessary modifications to model architectureor do not make full use of user/product associations. The contribution of this work is twofold: i) a method to explicitly employ historical reviews belonging to the same user/product in initializing representations, and ii) efficient incorporation of textual associations between users and products via a user-product cross-context module. Experiments on the IMDb, Yelp-2013 and Yelp-2014 English benchmarks with BERT, SpanBERT and Longformer pretrained language models show that our approach substantially outperforms previous state-of-the-art.
Recent developments in generative AI have shone a spotlight on high-performance synthetic text generation technologies. The now wide availability and ease of use of such models highlights the urgent need to provide equally powerful technologies capable of identifying synthetic text. With this in mind, we draw inspiration from psychological studies which suggest that people can be driven by emotion and encode emotion in the text they compose. We hypothesize that pretrained language models (PLMs) have an affective deficit because they lack such an emotional driver when generating text and consequently may generate synthetic text which has affective incoherence i.e. lacking the kind of emotional coherence present in human-authored text. We subsequently develop an emotionally aware detector by fine-tuning a PLM on emotion. Experiment results indicate that our emotionally-aware detector achieves improvements across a range of synthetic text generators, various sized models, datasets, and domains. Finally, we compare our emotionally-aware synthetic text detector to ChatGPT in the task of identification of its own output and show substantial gains, reinforcing the potential of emotion as a signal to identify synthetic text. Code, models, and datasets are available at https: //github.com/alanagiasi/emoPLMsynth
Translating literary works has perennially stood as an elusive dream in machine translation (MT), a journey steeped in intricate challenges. To foster progress in this domain, we hold a new shared task at WMT 2023, the first edition of the Discourse-Level Literary Translation. First, we (Tencent AI Lab and China Literature Ltd.) release a copyrighted and document-level Chinese-English web novel corpus. Furthermore, we put forth an industry-endorsed criteria to guide human evaluation process. This year, we totally received 14 submissions from 7 academia and industry teams. We employ both automatic and human evaluations to measure the performance of the submitted systems. The official ranking of the systems is based on the overall human judgments. In addition, our extensive analysis reveals a series of interesting findings on literary and discourse-aware MT. We release data, system outputs, and leaderboard at http://www2.statmt.org/wmt23/literary-translation-task.html.
Past work that investigates out-of-domain performance of QA systems has mainly focused on general domains (e.g. news domain, wikipedia domain), underestimating the importance of subdomains defined by the internal characteristics of QA datasets. In this paper, we extend the scope of “out-of-domain” by splitting QA examples into different subdomains according to their internal characteristics including question type, text length, answer position. We then examine the performance of QA systems trained on the data from different subdomains. Experimental results show that the performance of QA systems can be significantly reduced when the train data and test data come from different subdomains. These results question the generalizability of current QA systems in multiple subdomains, suggesting the need to combat the bias introduced by the internal characteristics of QA datasets.
Evaluating video captioning systems is a challenging task as there are multiple factors to consider; for instance: the fluency of the caption, multiple actions happening in a single scene, and the human bias of what is considered important. Most metrics try to measure how similar the system generated captions are to a single or a set of human-annotated captions. This paper presents a new method based on a deep learning model to evaluate these systems. The model is based on BERT, which is a language model that has been shown to work well in multiple NLP tasks. The aim is for the model to learn to perform an evaluation similar to that of a human. To do so, we use a dataset that contains human evaluations of system generated captions. The dataset consists of the human judgments of the captions produces by the system participating in various years of the TRECVid video to text task. BERTHA obtain favourable results, outperforming the commonly used metrics in some setups.
This paper presents the results of the General Machine Translation Task organised as part of the Conference on Machine Translation (WMT) 2022. In the general MT task, participants were asked to build machine translation systems for any of 11 language pairs, to be evaluated on test sets consisting of four different domains. We evaluate system outputs with human annotators using two different techniques: reference-based direct assessment and (DA) and a combination of DA and scalar quality metric (DA+SQM).
Evaluation of open-domain dialogue systems is highly challenging and development of better techniques is highlighted time and again as desperately needed. Despite substantial efforts to carry out reliable live evaluation of systems in recent competitions, annotations have been abandoned and reported as too unreliable to yield sensible results. This is a serious problem since automatic metrics are not known to provide a good indication of what may or may not be a high-quality conversation. Answering the distress call of competitions that have emphasized the urgent need for better evaluation techniques in dialogue, we present the successful development of human evaluation that is highly reliable while still remaining feasible and low cost. Self-replication experiments reveal almost perfectly repeatable results with a correlation of r=0.969. Furthermore, due to the lack of appropriate methods of statistical significance testing, the likelihood of potential improvements to systems occurring due to chance is rarely taken into account in dialogue evaluation, and the evaluation we propose facilitates application of standard tests. Since we have developed a highly reliable evaluation method, new insights into system performance can be revealed. We therefore include a comparison of state-of-the-art models (i) with and without personas, to measure the contribution of personas to conversation quality, as well as (ii) prescribed versus freely chosen topics. Interestingly with respect to personas, results indicate that personas do not positively contribute to conversation quality as expected.
Question Generation (QG) is the task of generating a plausible question for a given <passage, answer> pair. Template-based QG uses linguistically-informed heuristics to transform declarative sentences into interrogatives, whereas supervised QG uses existing Question Answering (QA) datasets to train a system to generate a question given a passage and an answer. A disadvantage of the heuristic approach is that the generated questions are heavily tied to their declarative counterparts. A disadvantage of the supervised approach is that they are heavily tied to the domain/language of the QA dataset used as training data. In order to overcome these shortcomings, we propose a distantly-supervised QG method which uses questions generated heuristically from summaries as a source of training data for a QG system. We make use of freely available news summary data, transforming declarative summary sentences into appropriate questions using heuristics informed by dependency parsing, named entity recognition and semantic role labeling. The resulting questions are then combined with the original news articles to train an end-to-end neural QG model. We extrinsically evaluate our approach using unsupervised QA: our QG model is used to generate synthetic QA pairs for training a QA model. Experimental results show that, trained with only 20k English Wikipedia-based synthetic QA pairs, the QA model substantially outperforms previous unsupervised models on three in-domain datasets (SQuAD1.1, Natural Questions, TriviaQA) and three out-of-domain datasets (NewsQA, BioASQ, DuoRC), demonstrating the transferability of the approach.
This paper presents the results of the newstranslation task, the multilingual low-resourcetranslation for Indo-European languages, thetriangular translation task, and the automaticpost-editing task organised as part of the Con-ference on Machine Translation (WMT) 2021.In the news task, participants were asked tobuild machine translation systems for any of10 language pairs, to be evaluated on test setsconsisting mainly of news stories. The taskwas also opened up to additional test suites toprobe specific aspects of translation.
The term translationese has been used to describe features of translated text, and in this paper, we provide detailed analysis of potential adverse effects of translationese on machine translation evaluation. Our analysis shows differences in conclusions drawn from evaluations that include translationese in test data compared to experiments that tested only with text originally composed in that language. For this reason we recommend that reverse-created test data be omitted from future machine translation test sets. In addition, we provide a re-evaluation of a past machine translation evaluation claiming human-parity of MT. One important issue not previously considered is statistical power of significance tests applied to comparison of human and machine translation. Since the very aim of past evaluations was investigation of ties between human and MT systems, power analysis is of particular importance, to avoid, for example, claims of human parity simply corresponding to Type II error resulting from the application of a low powered test. We provide detailed analysis of tests used in such evaluations to provide an indication of a suitable minimum sample size for future studies.
This paper presents the results of the news translation task and the similar language translation task, both organised alongside the Conference on Machine Translation (WMT) 2020. In the news task, participants were asked to build machine translation systems for any of 11 language pairs, to be evaluated on test sets consisting mainly of news stories. The task was also opened up to additional test suites to probe specific aspects of translation. In the similar language translation task, participants built machine translation systems for translating between closely related pairs of languages.
Recent machine translation shared tasks have shown top-performing systems to tie or in some cases even outperform human translation. Such conclusions about system and human performance are, however, based on estimates aggregated from scores collected over large test sets of translations and unfortunately leave some remaining questions unanswered. For instance, simply because a system significantly outperforms the human translator on average may not necessarily mean that it has done so for every translation in the test set. Firstly, are there remaining source segments present in evaluation test sets that cause significant challenges for top-performing systems and can such challenging segments go unnoticed due to the opacity of current human evaluation procedures? To provide insight into these issues we carefully inspect the outputs of top-performing systems in the most recent WMT-19 news translation shared task for all language pairs in which a system either tied or outperformed human translation. Our analysis provides a new method of identifying the remaining segments for which either machine or human perform poorly. For example, in our close inspection of WMT-19 English to German and German to English we discover the segments that disjointly proved a challenge for human and machine. For English to Russian, there were no segments included in our sample of translations that caused a significant challenge for the human translator, while we again identify the set of segments that caused issues for the top-performing system.
Past work that improves document-level sentiment analysis by encoding user and product in- formation has been limited to considering only the text of the current review. We investigate incorporating additional review text available at the time of sentiment prediction that may prove meaningful for guiding prediction. Firstly, we incorporate all available historical review text belonging to the author of the review in question. Secondly, we investigate the inclusion of his- torical reviews associated with the current product (written by other users). We achieve this by explicitly storing representations of reviews written by the same user and about the same product and force the model to memorize all reviews for one particular user and product. Additionally, we drop the hierarchical architecture used in previous work to enable words in the text to directly attend to each other. Experiment results on IMDB, Yelp 2013 and Yelp 2014 datasets show improvement to state-of-the-art of more than 2 percentage points in the best case.
This paper presents results from the Third Shared Task on Multilingual Surface Realisation (SR’20) which was organised as part of the COLING’20 Workshop on Multilingual Surface Realisation. As in SR’18 and SR’19, the shared task comprised two tracks: (1) a Shallow Track where the inputs were full UD structures with word order information removed and tokens lemmatised; and (2) a Deep Track where additionally, functional words and morphological information were removed. Moreover, each track had two subtracks: (a) restricted-resource, where only the data provided or approved as part of a track could be used for training models, and (b) open-resource, where any data could be used. The Shallow Track was offered in 11 languages, whereas the Deep Track in 3 ones. Systems were evaluated using both automatic metrics and direct assessment by human evaluators in terms of Readability and Meaning Similarity to reference outputs. We present the evaluation results, along with descriptions of the SR’19 tracks, data and evaluation methods, as well as brief summaries of the participating systems. For full descriptions of the participating systems, please see the separate system reports elsewhere in this volume.
This paper presents the results of the premier shared task organized alongside the Conference on Machine Translation (WMT) 2019. Participants were asked to build machine translation systems for any of 18 language pairs, to be evaluated on a test set of news stories. The main metric for this task is human judgment of translation quality. The task was also opened up to additional test suites to probe specific aspects of translation.
This paper presents the results of the WMT19 Metrics Shared Task. Participants were asked to score the outputs of the translations systems competing in the WMT19 News Translation Task with automatic metrics. 13 research groups submitted 24 metrics, 10 of which are reference-less “metrics” and constitute submissions to the joint task with WMT19 Quality Estimation Task, “QE as a Metric”. In addition, we computed 11 baseline metrics, with 8 commonly applied baselines (BLEU, SentBLEU, NIST, WER, PER, TER, CDER, and chrF) and 3 reimplementations (chrF+, sacreBLEU-BLEU, and sacreBLEU-chrF). Metrics were evaluated on the system level, how well a given metric correlates with the WMT19 official manual ranking, and segment level, how well the metric correlates with human judgements of segment quality. This year, we use direct assessment (DA) as our only form of manual evaluation.
We report results from the SR’19 Shared Task, the second edition of a multilingual surface realisation task organised as part of the EMNLP’19 Workshop on Multilingual Surface Realisation. As in SR’18, the shared task comprised two tracks with different levels of complexity: (a) a shallow track where the inputs were full UD structures with word order information removed and tokens lemmatised; and (b) a deep track where additionally, functional words and morphological information were removed. The shallow track was offered in eleven, and the deep track in three languages. Systems were evaluated (a) automatically, using a range of intrinsic metrics, and (b) by human judges in terms of readability and meaning similarity. This report presents the evaluation results, along with descriptions of the SR’19 tracks, data and evaluation methods. For full descriptions of the participating systems, please see the separate system reports elsewhere in this volume.
We report results from the SR’18 Shared Task, a new multilingual surface realisation task organised as part of the ACL’18 Workshop on Multilingual Surface Realisation. As in its English-only predecessor task SR’11, the shared task comprised two tracks with different levels of complexity: (a) a shallow track where the inputs were full UD structures with word order information removed and tokens lemmatised; and (b) a deep track where additionally, functional words and morphological information were removed. The shallow track was offered in ten, and the deep track in three languages. Systems were evaluated (a) automatically, using a range of intrinsic metrics, and (b) by human judges in terms of readability and meaning similarity. This report presents the evaluation results, along with descriptions of the SR’18 tracks, data and evaluation methods. For full descriptions of the participating systems, please see the separate system reports elsewhere in this volume.
This paper presents the results of the premier shared task organized alongside the Conference on Machine Translation (WMT) 2018. Participants were asked to build machine translation systems for any of 7 language pairs in both directions, to be evaluated on a test set of news stories. The main metric for this task is human judgment of translation quality. This year, we also opened up the task to additional test sets to probe specific aspects of translation.
This paper presents the results of the WMT18 Metrics Shared Task. We asked participants of this task to score the outputs of the MT systems involved in the WMT18 News Translation Task with automatic metrics. We collected scores of 10 metrics and 8 research groups. In addition to that, we computed scores of 8 standard metrics (BLEU, SentBLEU, chrF, NIST, WER, PER, TER and CDER) as baselines. The collected scores were evaluated in terms of system-level correlation (how well each metric’s scores correlate with WMT18 official manual ranking of systems) and in terms of segment-level correlation (how often a metric agrees with humans in judging the quality of a particular sentence relative to alternate outputs). This year, we employ a single kind of manual evaluation: direct assessment (DA).
Monolingual evaluation of Machine Translation (MT) aims to simplify human assessment by requiring assessors to compare the meaning of the MT output with a reference translation, opening up the task to a much larger pool of genuinely qualified evaluators. Monolingual evaluation runs the risk, however, of bias in favour of MT systems that happen to produce translations superficially similar to the reference and, consistent with this intuition, previous investigations have concluded monolingual assessment to be strongly biased in this respect. On re-examination of past analyses, we identify a series of potential analytical errors that force some important questions to be raised about the reliability of past conclusions, however. We subsequently carry out further investigation into reference bias via direct human assessment of MT adequacy via quality controlled crowd-sourcing. Contrary to both intuition and past conclusions, results for show no significant evidence of reference bias in monolingual evaluation of MT.
Meaningful conclusions about the relative performance of NLP systems are only possible if the gold standard employed in a given evaluation is both valid and reliable. In this paper, we explore the validity of human annotations currently employed in the evaluation of document-level quality estimation for machine translation (MT). We demonstrate the degree to which MT system rankings are dependent on weights employed in the construction of the gold standard, before proposing direct human assessment as a valid alternative. Experiments show direct assessment (DA) scores for documents to be highly reliable, achieving a correlation of above 0.9 in a self-replication experiment, in addition to a substantial estimated cost reduction through quality controlled crowd-sourcing. The original gold standard based on post-edits incurs a 10–20 times greater cost than DA.
Human-targeted metrics provide a compromise between human evaluation of machine translation, where high inter-annotator agreement is difficult to achieve, and fully automatic metrics, such as BLEU or TER, that lack the validity of human assessment. Human-targeted translation edit rate (HTER) is by far the most widely employed human-targeted metric in machine translation, commonly employed, for example, as a gold standard in evaluation of quality estimation. Original experiments justifying the design of HTER, as opposed to other possible formulations, were limited to a small sample of translations and a single language pair, however, and this motivates our re-evaluation of a range of human-targeted metrics on a substantially larger scale. Results show significantly stronger correlation with human judgment for HBLEU over HTER for two of the nine language pairs we include and no significant difference between correlations achieved by HTER and HBLEU for the remaining language pairs. Finally, we evaluate a range of quality estimation systems employing HTER and direct assessment (DA) of translation adequacy as gold labels, resulting in a divergence in system rankings, and propose employment of DA for future quality estimation evaluations.