Yake Niu


2025

pdf bib
Two Challenges, One Solution: Robust Multimodal Learning through Dynamic Modality Recognition and Enhancement
Lanxin Bi | Yunqi Zhang | Luyi Wang | Yake Niu | Hui Zhao
Findings of the Association for Computational Linguistics: EMNLP 2025

Multimodal machine learning is often hindered by two critical challenges: modality missingness and modality imbalance. These challenges significantly degrade the performance of multimodal models. The majority of existing methods either require the availability of full-modality data during the training phase or necessitate explicit annotations to detect missing modalities. These dependencies severely limit the models’ applicability in the real world. To tackle these problems, we propose a Dynamic modality Recognition and Enhancement for Adaptive Multimodal fusion framework *DREAM*. Within DREAM, we innovatively employ a sample-level dynamic modality assessment mechanism to direct selective reconstruction of missing or underperforming modalities. Additionally, we introduce a soft masking fusion strategy that adaptively integrates different modalities according to their estimated contributions, enabling more accurate and robust predictions. Experimental results on three benchmark datasets consistently demonstrate that DREAM outperforms several representative baseline and state-of-the-art models, marking its robustness against modality missingness and imbalanced modality.

2024

pdf bib
Better Late Than Never: Model-Agnostic Hallucination Post-Processing Framework Towards Clinical Text Summarization
Songda Li | Yunqi Zhang | Chunyuan Deng | Yake Niu | Hui Zhao
Findings of the Association for Computational Linguistics: ACL 2024

Clinical text summarization has proven successful in generating concise and coherent summaries. However, these summaries may include unintended text with hallucinations, which can mislead clinicians and patients. Existing methods for mitigating hallucinations can be categorized into task-specific and task-agnostic approaches. Task-specific methods lack versatility for real-world applicability. Meanwhile, task-agnostic methods are not model-agnostic, so they require retraining for different models, resulting in considerable computational costs. To address these challenges, we propose MEDAL, a model-agnostic framework designed to post-process medical hallucinations. MEDAL can seamlessly integrate with any medical summarization model, requiring no additional computational overhead. MEDAL comprises a medical infilling model and a hallucination correction model. The infilling model generates non-factual summaries with common errors to train the correction model. The correction model is incorporated with a self-examination mechanism to activate its cognitive capability. We conduct comprehensive experiments using 11 widely accepted metrics on 7 baseline models across 3 medical text summarization tasks. MEDAL demonstrates superior performance in correcting hallucinations when applied to summaries generated by pre-trained language models and large language models.