Yang Lei

Also published as:


2024

pdf bib
基于问题扩展的散文答案候选句抽取方法研究(Sentiment classification method based on multitasking and multimodal interactive learning)
Yang Lei (雷洋) | Suge Wang (王素格) | Shuqi Li (李书琪) | Hao Wang (王浩)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)

“在散文阅读理解中,一方面问题的题干通常较为简洁、用词较为抽象,机器难以直接理解问题的含义和要求;另一方面,散文文章较长,答案候选句分散在文章的多个段落,给答案候选句的抽取任务带来巨大的挑战。因此,本文提出了一种基于问题扩展的散文答案候选句抽取方法。首先,利用大语言模型抽取文章中与问题题干相关的词,构建问题词扩展库,其次,利用大语言模型强大的生成能力对原问题的题干进行重写,进一步,利用问题词扩展库对其扩展,最后,通过对散文文章分块处理,建立基于全局上下文信息、历史信息的问题和文章句子的相关性判断模型,用于抽取答案候选句。通过在散文阅读理解数据集上进行实验,实验结果表明本文提出的方法提高了散文抽取答案候选句的准确率,为散文阅读理解的生成类问题的解答提供了技术支撑。”