Yanyuan Qiao


2025

pdf bib
Vision-and-Language Navigation with Analogical Textual Descriptions in LLMs
Yue Zhang | Tianyi Ma | Zun Wang | Yanyuan Qiao | Parisa Kordjamshidi
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Integrating large language models (LLMs) into embodied AI models is becoming increasingly prevalent. However, existing zero-shot LLM-based Vision-and-Language Navigation (VLN) agents either encode images as textual scene descriptions, potentially oversimplifying visual details, or process raw image inputs, which can fail to capture abstract semantics required for high-level reasoning. In this paper, we improve the navigation agent’s contextual understanding by incorporating textual descriptions that facilitate analogical reasoning across images from multiple perspectives. By leveraging text-based analogical reasoning, the agent enhances its global scene understanding and spatial reasoning, leading to more accurate action decisions. We evaluate our approach on the R2R dataset, where our experiments demonstrate significant improvements in navigation performance.

pdf bib
A Knowledge-driven Adaptive Collaboration of LLMs for Enhancing Medical Decision-making
Xiao Wu | Ting-Zhu Huang | Liang-Jian Deng | Yanyuan Qiao | Imran Razzak | Yutong Xie
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Medical decision-making often involves integrating knowledge from multiple clinical specialties, typically achieved through multidisciplinary teams. Inspired by this collaborative process, recent work has leveraged large language models (LLMs) in multi-agent collaboration frameworks to emulate expert teamwork. While these approaches improve reasoning through agent interaction, they are limited by static, pre-assigned roles, which hinder adaptability and dynamic knowledge integration. To address these limitations, we propose KAMAC, a Knowledge-driven Adaptive Multi-Agent Collaboration framework that enables LLM agents to dynamically form and expand expert teams based on the evolving diagnostic context. KAMAC begins with one or more expert agents and then conducts a knowledge-driven discussion to identify and fill knowledge gaps by recruiting additional specialists as needed. This supports flexible, scalable collaboration in complex clinical scenarios, with decisions finalized through reviewing updated agent comments. Experiments on two real-world medical benchmarks demonstrate that KAMAC significantly outperforms both single-agent and advanced multi-agent methods, particularly in complex clinical scenarios (i.e., cancer prognosis) requiring dynamic, cross-specialty expertise. Our code is publicly available at: https://github.com/XiaoXiao-Woo/KAMAC.