Yaoming Wang


2025

pdf bib
SalaMAnder: Shapley-based Mathematical Expression Attribution and Metric for Chain-of-Thought Reasoning
Yue Xin | Chen Shen | Shaotian Yan | Xiaosong Yuan | Yaoming Wang | Xiaofeng Zhang | Chenxi Huang | Jieping Ye
Findings of the Association for Computational Linguistics: EMNLP 2025

Chain-of-Thought (CoT) prompting enhances the math reasoning capability of large language models (LLMs) to a large margin. However, the mechanism underlying such improvements remains unexplored. In this paper, we present SalaMAnder (Shapley-based Mathematical Expression Attribution and Metric), a theoretically grounded methodology as well as a mathematically rigorous evaluation metric for quantifying component-level contributions in few-shot CoT reasoning. Concretely, we leverage the Shapley value for mathematical expression attribution and develop an efficient stratified sampling algorithm that significantly reduces the computational complexity. Besides, we develop the CoSP (Cardinality of Shapley Positives) metric through covariance analysis. Comprehensive validation across popular LLM models and diverse mathematical benchmarks demonstrates that the CoSP metric within our SalaMAnder framework exhibits a robust monotonic correlation with model performance, not only providing theoretical explanations for the empirical success of existing few-shot CoT but also establishing mathematically rigorous principles for prompt construction optimization. Furthermore, we verify the reliability of the explanation, based on which we unify the insights of previous work.

2023

pdf bib
Efficient Hybrid Generation Framework for Aspect-Based Sentiment Analysis
Haoran Lv | Junyi Liu | Henan Wang | Yaoming Wang | Jixiang Luo | Yaxiao Liu
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Aspect-based sentiment analysis (ABSA) has attracted broad attention due to its commercial value. Natural Language Generation-based (NLG) approaches dominate the recent advance in ABSA tasks. However, current NLG practices are inefficient because most of them directly employ an autoregressive generation framework that cannot efficiently generate location information and semantic representations of ABSA targets. In this paper, we propose a novel framework, namely Efficient Hybrid Generation (EHG) to revolutionize traditions. Specifically, we leverage an Efficient Hybrid Transformer to generate the location and semantic information of ABSA targets in parallel. Besides, we design a novel global hybrid loss function in combination with bipartite matching to achieve end-to-end model training. Extensive experiments demonstrate that our proposed EHG framework outperforms current state-of-the-art methods in almost all cases and outperforms existing NLG-based methods in terms of inference efficiency.