Yen-Ju Lu


2025

pdf bib
Paired by the Teacher: Turning Unpaired Data into High-Fidelity Pairs for Low-Resource Text Generation
Yen-Ju Lu | Thomas Thebaud | Laureano Moro-Velazquez | Najim Dehak | Jesus Villalba
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We present Paired by the Teacher (PbT), a two-stage teacher–student pipeline that synthesizes accurate input–output pairs without human labels or parallel data. In many low-resource natural language generation (NLG) scenarios, practitioners may have only raw outputs, like highlights, recaps, or questions, or only raw inputs, such as articles, dialogues, or paragraphs, but seldom both. This mismatch forces small models to learn from very few examples or rely on costly, broad-scope synthetic examples produced by large LLMs. PbT addresses this by asking a teacher LLM to compress each unpaired example into a concise intermediate representation (IR), and training a student to reconstruct inputs from IRs. This enables outputs to be paired with student-generated inputs, yielding high-quality synthetic data. We evaluate PbT on five benchmarks—document summarization (XSum, CNNDM), dialogue summarization (SAMSum, DialogSum), and question generation (SQuAD)—as well as an unpaired setting on SwitchBoard (paired with DialogSum summaries). An 8B student trained only on PbT data outperforms models trained on 70 B teacher-generated corpora and other unsupervised baselines, coming within 1.2 ROUGE-L of human-annotated pairs and closing 82% of the oracle gap at one-third the annotation cost of direct synthesis. Human evaluation on SwitchBoard further confirms that only PbT produces concise, faithful summaries aligned with the target style, highlighting its advantage of generating in-domain sources that avoid the mismatch, limiting direct synthesis.

pdf bib
Mutual Reinforcement of LLM Dialogue Synthesis and Summarization Capabilities for Few-Shot Dialogue Summarization
Yen-Ju Lu | Ting-Yao Hu | Hema Swetha Koppula | Hadi Pouransari | Jen-Hao Rick Chang | Yin Xia | Xiang Kong | Qi Zhu | Xiaoming Simon Wang | Oncel Tuzel | Raviteja Vemulapalli
Findings of the Association for Computational Linguistics: NAACL 2025

In this work, we propose Mutual Reinforcing Data Synthesis (MRDS) within LLMs to improve few-shot dialogue summarization task. Unlike prior methods that require external knowledge, we mutually reinforce the LLM’s dialogue synthesis and summarization capabilities, allowing them to complement each other during training and enhance overall performances. The dialogue synthesis capability is enhanced by directed preference optimization with preference scoring from summarization capability. The summarization capability is enhanced by the additional high quality dialogue-summary paired data produced by the dialogue synthesis capability. By leveraging the proposed MRDS mechanism, we elicit the internal knowledge of LLM in the format of synthetic data, and use it to augment the few-shot real training dataset. Empirical results demonstrate that our method improves dialogue summarization, achieving a 1.5% increase in ROUGE scores and a 0.3% improvement in BERT scores in few-shot settings. Furthermore, our method attains the highest average scores in human evaluations, surpassing both the pre-trained models and the baselines fine-tuned solely for summarization tasks.