Yi Ding


2025

pdf bib
Unveiling Environmental Impacts of Large Language Model Serving: A Functional Unit View
Yanran Wu | Inez Hua | Yi Ding
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) offer powerful capabilities but come with significant environmental impact, particularly in carbon emissions. Existing studies benchmark carbon emissions but lack a standardized basis for comparison across different model configurations. To address this, we introduce the concept of functional unit (FU) as a standardized basis and develop FUEL, the first FU-based framework for evaluating LLM serving’s environmental impact. Through three case studies, we uncover key insights and trade-offs in reducing carbon emissions by optimizing model size, quantization strategy, and hardware choice, paving the way for more sustainable LLM serving. The code is available at https://github.com/jojacola/FUEL.

pdf bib
Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
Miao Ziqi | Yi Ding | Lijun Li | Jing Shao
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

With the emergence of strong vision language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments.Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: vision-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack.VisCo fabricates contextual dialogue using four distinct vision-focused strategies, dynamically generating auxiliary images when necessary to construct a vision-centric jailbreak scenario.To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which achieves a toxicity score of 2.48 and an ASR of 22.2%. Code: https://github.com/Dtc7w3PQ/Visco-Attack.

2024

pdf bib
Noise Correction on Subjective Datasets
Uthman Jinadu | Yi Ding
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Incorporating every annotator’s perspective is crucial for unbiased data modeling. Annotator fatigue and changing opinions over time can distort dataset annotations. To combat this, we propose to learn a more accurate representation of diverse opinions by utilizing multitask learning in conjunction with loss-based label correction. We show that using our novel formulation, we can cleanly separate agreeing and disagreeing annotations. Furthermore, this method provides a controllable way to encourage or discourage disagreement. We demonstrate that this modification can improve prediction performance in a single or multi-annotator setting. Lastly, we show that this method remains robust to additional label noise that is applied to subjective data.