2024
pdf
bib
abs
Biomedical Event Causal Relation Extraction by Reasoning Optimal Entity Relation Path
Lishuang Li
|
Liteng Mi
|
Beibei Zhang
|
Yi Xiang
|
Yubo Feng
|
Xueyang Qin
|
Jingyao Tang
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
“Biomedical Event Causal Relation Extraction (BECRE) is an important task in biomedical infor-mation extraction. Existing methods usually use pre-trained language models to learn semanticrepresentations and then predict the event causal relation. However, these methods struggle tocapture sufficient cues in biomedical texts for predicting causal relations. In this paper, we pro-pose a Path Reasoning-based Relation-aware Network (PRRN) to explore deeper cues for causalrelations using reinforcement learning. Specifically, our model reasons the relation paths betweenentity arguments of two events, namely entity relation path, which connects the two biomedicalevents through the multi-hop interactions between entities to provide richer cues for predictingevent causal relations. In PRRN, we design a path reasoning module based on reinforcementlearning and propose a novel reward function to encourage the model to focus on the length andcontextual relevance of entity relation paths. The experimental results on two datasets suggestthat PRRN brings considerable improvements over the state-of-the-art models.Introduction”
pdf
bib
abs
Triple-view Event Hierarchy Model for Biomedical Event Representation
Jiayi Huang
|
Lishuang Li
|
Xueyang Qin
|
Yi Xiang
|
Jiaqi Li
|
Yubo Feng
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 1: Main Conference)
“Biomedical event representation can be applied to various language tasks. A biomedical eventoften involves multiple biomedical entities and trigger words, and the event structure is complex.However, existing research on event representation mainly focuses on the general domain. Ifmodels from the general domain are directly transferred to biomedical event representation, theresults may not be satisfactory. We argue that biomedical events can be divided into three hierar-chies, each containing unique feature information. Therefore, we propose the Triple-views EventHierarchy Model (TEHM) to enhance the quality of biomedical event representation. TEHM ex-tracts feature information from three different views and integrates them. Specifically, due to thecomplexity of biomedical events, We propose the Trigger-aware Aggregator module to handlecomplex units within biomedical events. Additionally, we annotate two similarity task datasetsin the biomedical domain using annotation standards from the general domain. Extensive exper-iments demonstrate that TEHM achieves state-of-the-art performance on biomedical similaritytasks and biomedical event casual relation extraction.Introduction”
2023
pdf
bib
abs
Towards Building a Robust Toxicity Predictor
Dmitriy Bespalov
|
Sourav Bhabesh
|
Yi Xiang
|
Liutong Zhou
|
Yanjun Qi
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 5: Industry Track)
Recent NLP literature pays little attention to the robustness of toxicity language predictors, while these systems are most likely to be used in adversarial contexts. This paper presents a novel adversarial attack, \texttt{ToxicTrap}, introducing small word-level perturbations to fool SOTA text classifiers to predict toxic text samples as benign. \texttt{ToxicTrap} exploits greedy based search strategies to enable fast and effective generation of toxic adversarial examples. Two novel goal function designs allow \texttt{ToxicTrap} to identify weaknesses in both multiclass and multilabel toxic language detectors. Our empirical results show that SOTA toxicity text classifiers are indeed vulnerable to the proposed attacks, attaining over 98\% attack success rates in multilabel cases. We also show how a vanilla adversarial training and its improved version can help increase robustness of a toxicity detector even against unseen attacks.