Yiming Zhang

CMU

Other people with similar names: Yiming Zhang (May refer to several people)


2023

pdf bib
FLamE: Few-shot Learning from Natural Language Explanations
Yangqiaoyu Zhou | Yiming Zhang | Chenhao Tan
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Natural language explanations have the potential to provide rich information that in principle guides model reasoning. Yet, recent work by Lampinen et al. has shown limited utility of natural language explanations in improving classification. To effectively learn from explanations, we present FLamE, a two-stage few-shot learning framework that first generates explanations using GPT-3, and then fine-tunes a smaller model (e.g., RoBERTa) with generated explanations. Our experiments on natural language inference demonstrate effectiveness over strong baselines, increasing accuracy by 17.6% over GPT-3 Babbage and 5.7% over GPT-3 Davinci in e-SNLI.Despite improving classification performance, human evaluation surprisingly reveals that the majority of generated explanations does not adequately justify classification decisions. Additional analyses point to the important role of label-specific cues (e.g., “not know” for the neutral label) in generated explanations.

pdf bib
Learning to Ignore Adversarial Attacks
Yiming Zhang | Yangqiaoyu Zhou | Samuel Carton | Chenhao Tan
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Despite the strong performance of current NLP models, they can be brittle against adversarial attacks. To enable effective learning against adversarial inputs, we introduce the use of rationale models that can explicitly learn to ignore attack tokens. We find that the rationale models can successfully ignore over 90% of attack tokens. This approach leads to consistent sizable improvements (~10%) over baseline models in robustness on three datasets for both BERT and RoBERTa, and also reliably outperforms data augmentation with adversarial examples alone. In many cases, we find that our method is able to close the gap between model performance on a clean test set and an attacked test set and hence reduce the effect of adversarial attacks.

pdf bib
BiasX: “Thinking Slow” in Toxic Content Moderation with Explanations of Implied Social Biases
Yiming Zhang | Sravani Nanduri | Liwei Jiang | Tongshuang Wu | Maarten Sap
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Toxicity annotators and content moderators often default to mental shortcuts when making decisions. This can lead to subtle toxicity being missed, and seemingly toxic but harmless content being over-detected. We introduce BiasX, a framework that enhances content moderation setups with free-text explanations of statements’ implied social biases, and explore its effectiveness through a large-scale crowdsourced user study. We show that indeed, participants substantially benefit from explanations for correctly identifying subtly (non-)toxic content. The quality of explanations is critical: imperfect machine-generated explanations (+2.4% on hard toxic examples) help less compared to expert-written human explanations (+7.2%). Our results showcase the promise of using free-text explanations to encourage more thoughtful toxicity moderation.

2022

pdf bib
Active Example Selection for In-Context Learning
Yiming Zhang | Shi Feng | Chenhao Tan
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

With a handful of demonstration examples, large-scale language models demonstrate strong capability to perform various tasks by in-context learning from these examples, without any fine-tuning. We demonstrate that in-context learning performance can be highly unstable across samples of examples, indicating the idiosyncrasies of how language models acquire information. We formulate example selection for in-context learning as a sequential decision problem, and propose a reinforcement learning algorithm for identifying generalizable policies to select demonstration examples. For GPT-2, our learned policies demonstrate strong abilities of generalizing to unseen tasks in training, with a 5.8% improvement on average. Examples selected from our learned policies can even achieve a small improvement on GPT-3 Ada. However, the improvement diminishes on larger GPT-3 models, suggesting emerging capabilities of large language models.