Natural language explanations have the potential to provide rich information that in principle guides model reasoning. Yet, recent work by Lampinen et al. has shown limited utility of natural language explanations in improving classification. To effectively learn from explanations, we present FLamE, a two-stage few-shot learning framework that first generates explanations using GPT-3, and then fine-tunes a smaller model (e.g., RoBERTa) with generated explanations. Our experiments on natural language inference demonstrate effectiveness over strong baselines, increasing accuracy by 17.6% over GPT-3 Babbage and 5.7% over GPT-3 Davinci in e-SNLI.Despite improving classification performance, human evaluation surprisingly reveals that the majority of generated explanations does not adequately justify classification decisions. Additional analyses point to the important role of label-specific cues (e.g., “not know” for the neutral label) in generated explanations.
Despite the strong performance of current NLP models, they can be brittle against adversarial attacks. To enable effective learning against adversarial inputs, we introduce the use of rationale models that can explicitly learn to ignore attack tokens. We find that the rationale models can successfully ignore over 90% of attack tokens. This approach leads to consistent sizable improvements (~10%) over baseline models in robustness on three datasets for both BERT and RoBERTa, and also reliably outperforms data augmentation with adversarial examples alone. In many cases, we find that our method is able to close the gap between model performance on a clean test set and an attacked test set and hence reduce the effect of adversarial attacks.
Toxicity annotators and content moderators often default to mental shortcuts when making decisions. This can lead to subtle toxicity being missed, and seemingly toxic but harmless content being over-detected. We introduce BiasX, a framework that enhances content moderation setups with free-text explanations of statements’ implied social biases, and explore its effectiveness through a large-scale crowdsourced user study. We show that indeed, participants substantially benefit from explanations for correctly identifying subtly (non-)toxic content. The quality of explanations is critical: imperfect machine-generated explanations (+2.4% on hard toxic examples) help less compared to expert-written human explanations (+7.2%). Our results showcase the promise of using free-text explanations to encourage more thoughtful toxicity moderation.
With a handful of demonstration examples, large-scale language models demonstrate strong capability to perform various tasks by in-context learning from these examples, without any fine-tuning. We demonstrate that in-context learning performance can be highly unstable across samples of examples, indicating the idiosyncrasies of how language models acquire information. We formulate example selection for in-context learning as a sequential decision problem, and propose a reinforcement learning algorithm for identifying generalizable policies to select demonstration examples. For GPT-2, our learned policies demonstrate strong abilities of generalizing to unseen tasks in training, with a 5.8% improvement on average. Examples selected from our learned policies can even achieve a small improvement on GPT-3 Ada. However, the improvement diminishes on larger GPT-3 models, suggesting emerging capabilities of large language models.